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Abstract

In system synthesis, we transform a specification
into a system that is guaranteed to satisfy the specifi-
cation. When the system is distributed, the goal is to
construct the system’s underlying processes. Results
on multi-player games imply that the synthesis prob-
lem for linear specifications is undecidable for general
architectures, and is nonelementary decidable for hi-
erarchical architectures, where the processes are lin-
early ordered and information among them flows in
one direction. In this paper we present a significant
extension of this result. We handle both linear and
branching specifications, and we show that a sufficient
condition for decidability of the synthesis problem is
a linear or cyclic order among the processes, in which
information flows in either one or both directions. We
also allow the processes to have internal hidden vari-
ables, and we consider communications with and with-
out delay. Many practical applications fall into this
class.

1 Introduction

In system synthesis, we transform a specification
into a system that is guaranteed to satisfy the speci-
fication. Early work on synthesis consider closed sys-
tems. There, a system that meets the specification
can be extracted from a constructive proof that the
specification is satisfiable [MW80, EC82]. As argued
in [ALW89, Dil89, PR&9a], such synthesis paradigms
are not of much interest when applied to open sys-
tems, which interact with an environment. While syn-
thesis that is based on satisfiability assumes no envi-
ronment or a cooperative one, synthesis of open sys-
tems should assume a hostile environment, and should
generate a system that satisfies the specification no
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matter how the environment behaves. The work in
[ALWS89, PR89a] formulated the synthesis problem in
terms of a game between the system and the envi-
ronment, and is closely related to Church’s solvability
problem [Chu63]. Given sets I and O of input and
output signals, respectively, we can view a system as
a strategy P : (27)* — 29 that maps a finite sequence
of sets of input signals (the behavior of the environ-
ment so far) into a set of output signals (the reaction
of the system to this behavior).

When P interacts with an environment that gener-
ates infinite input sequences, it associates with each
input sequence an infinite computation over 279,
We say that a specification 1 is realizable iff there
is a strategy all of whose computations satisfy ,
in case @ is a linear specification, or a strategy
whose induced computation tree satisfies 1, in case
1 is a branching specification. Synthesis of 1 then
amounts to constructing such a strategy. Solutions
for the realizability and synthesis problems for spec-
ifications in the linear temporal logic LTL are pre-
sented in [ALWS89, PR89a]. The solutions are ex-
tended in [PR89b, Var95] to asynchronous systems
and in [KV99] to systems with incomplete informa-
tion and specifications in the branching temporal logic
CTL*. Methods developed for synthesis of open sys-
tems are applicable also for supervisory control, where
instead of hostile environments we consider collabora-
tive controllers of nondeterministic systems [RW89].

While the transition to open systems has signifi-
cantly broaden the scope of synthesis to real-life de-
signs, it is still limited to settings in which the open
system consists of a single process. In a more real-
istic setting, that of a distributed system, the input
to the synthesis problem consists of both the spec-
ification and an architecture, which may consist of
more than one process and describes the communi-
cation channels between the different processes. More
formally, we assume a setting with n processes, with
process i referring to sets I;, O;, and H;, of input,
output, and hidden (internal) signals (input signals
may be ezxternal; i.e., generated by the environment),
and we want to construct for each process a strat-

www.manaraa.com



egy P; : (21i)* — 20iYHi 5o that the composition of
the strategies satisfies the specification. The architec-
ture is given by a set of conditions like Oy U Oy C I3
(“the only channels to Ps are from Py to P,”). The
exact definition of the composition of the strategies
then depends on assumptions on the communication
(e.g., whether communication involves a delay). If, for
example, we want to synthesize five dining philoso-
phers [Dij72], we can specify in temporal logic the
mutual exclusion and non-starvation requirements for
the philosophers, specify a two-way ring with five pro-
cesses, and ask the synthesis procedure to construct
appropriate strategies for the processes. Clearly, a so-
lution for the dining philosophers that refers to a single
process is not of much interest.

There are two possible ways to approach the syn-
thesis problem for distributed systems. One approach
is to use a synthesis procedure for a single process, and
then decompose the process according to the given ar-
chitecture [EC82, MW84]. While this approach has
a computational advantage, known decomposition al-
gorithms are not complete in the sense that a speci-
fication may be realizable with respect to a given ar-
chitecture yet the decomposition algorithm would fail
[PRI0]. Thus, one can view decomposition as a heuris-
tic for the synthesis problem, which is not guaranteed
to work. The second approach is to refer to the archi-
tecture of the distributed system from the outset and
construct the underlying processes directly [PR90].

Results on multi-player games imply that the real-
izability problem for general distributed systems is un-
decidable [PR79, PRI0] (the results in [PR79] refer to
multiple-person alternating Turing machines and are
extended in [PRY0] to the synthesis setting). Essen-
tially, there is an architecture Q (in fact, a very simple
architecture, consisting of two independent processes
P, and P, that interact with the same environment;
that is I] n (Oz UHQ) = @ and 12 n (O] @] H]) = w)
such that for every deterministic Turing machine M,
there is an LTL formula j; such that M halts on
the empty tape iff ¢ is realizable in €. The reduc-
tion is heavily based on P; and P, being independent,
and it fails, for example, if we assume that P, gets
its input from P; (i.e., Oy C I5). Indeed, it is shown
in [PR79, PR9I0] that once we consider hierarchical ar-
chitectures, in which the processes are linearly ordered
and information flows in one direction, the realizability
problem is nonelementary decidable for specifications
in LTL.

The decidability result in [PR90] suffers from two
limitations. First, when we synthesize a system from
an LTL specification 9, we require 1 to hold in all the

computations of the system. Consequently, we can-
not impose possibility requirements on the system (cf.
[DTV99]). In the dining-philosophers example, while
we can specify in LTL mutual exclusion, we cannot
specify deadlock freedom (every finite interaction can
be extended so that a philosopher eventually eats). In
order to express possibility properties, we should spec-
ify the system using branching temporal logic, which
enables both universal and existential path quantifi-
cation [EH86, Eme90]. Second, and more crucially,
the algorithm in [PR90] is not applicable for architec-
tures that are not hierarchical, and real-life designs
are rarely based on hierarchical architectures. We do
not count, the nonelementary complexity as a limita-
tion, as it is accompanied by a matching lower bound
and, as we discuss further in Section 6, the worst-case
complexity rarely appears in practice.

In this paper we remove both limitations. We con-
sider specifications in the branching temporal logic
CTL* (which subsumes LTL), and we handle all archi-
tectures in which there is a linear or cyclic order among
the processes, in which information flows in either one
or both directions. Thus, our architectures can be ei-
ther chains or rings with both one-way and two-way
communication channels. In addition, we allow the
processes to have internal hidden variables, and we
consider communications with and without delay. We
show that the realizability problem stays decidable in
all these cases. The solution we present is based on
alternating tree automata, which separate the logical
and algorithmic aspects of the problem: given a spec-
ification ¢ and an architecture (), we construct an au-
tomaton Agq  such that ¢ is realizable in Q iff Aq 4 is
not empty. To check realizability, the automaton has
to be tested for nonemptiness [EJ88, PR89a, KV98|.
The nonemptiness algorithm also synthesizes the pro-
cesses in ) that together realize 1.

We argue that the results in the paper significantly
extend the scope of synthesis for distributed systems,
as commonly used architecture belong to the class of
architectures we handle [Tan87]. Examples of applica-
tions of these architectures include various communi-
cation protocols in which communication proceeds in
layers. For example, the so-called OSI model consists
of a seven-layer protocol stack (Application, Presen-
tation, Session, Transport, Network, Data link, and
Physical layers), where every layer communicates with
the layer above it and the layer below it. The envi-
ronment talks to the top layer and the bottom layer
[Man99]. Architectures with two-way communication
channels are common in scientific computations, say
when we iterate in order to solve a differential equa-
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tion and each process works on part of the computed
domain. Then, it is useful to divide the domain to
layers so that in each iteration every layer updates its
neighbors with its results from the previous iteration
[PTVF92].

2 Preliminaries

2.1 Trees and labeled trees

Given a finite set Y, an Y-tree is a set 7' C Y* such
that if z - v € T, where z € T* and v € T, then also
xz € T. When T is not important or clear from the
context, we call T' a tree. When T' = T*, we say that
T is full. The elements of T" are called nodes, and the
empty word € is the root of T'. For every = € T, the
nodes z - v € T where v € YT are the children of z.
Each node z of T has a direction, dir(xz) in Y. The
direction of € is v9, for some designated v° € Y, called
the root direction. The direction of a node z - v is v.

Given two finite sets Y and X, a X-labeled Y -tree is
a pair (T, V) where T is an Y-tree and V : T —» ¥
maps each node of T to a letter in ¥. When T
and ¥ are not important or clear from the context,
we call (T,V) a labeled tree. For a X-labeled Y-
tree (Y*, V), we define the memoryfull version of
(Y*,V), denoted mem({Y*,V)) as the X*-labeled Y-
tree (Y*, V') where V'(e) = V(e), for v € T we have
V'(v) = V(e) - V(v), and for all z € YT and v € T
we have V'(z - v) = V'(z) - V(v). Thus, the label of
a node = in mem((Y*,V)) is the word obtained by
concatenating the labels of all the prefixes (including
€) of z in (Y* V).

For a ¥-labeled Y-tree (Y*, V), we define the z-ray
of (Y*,V), denoted zray((Y*,V)), as the (T x X)-
labeled Y-tree (Y*, V') in which each node is labeled
by both its direction and its labeling in (Y*, V). Thus,
for every z € T*, we have V'(z) = (dir(z), V(z)). Es-
sentially, the labels in zray({(Y*,V)) contain informa-
tion not only about the surface of (Y*, V) (its labels)
but also about its skeleton (its nodes).

For a Y-labeled YT-tree (Y*, V'), we define the delay
of (Y*, V), denoted delay({(Y*,V)), as the X-labeled
T-tree (Y*, V') in which V'(e) = V(¢) and for all z €
T* and v € T, we have V'(z - v) = V(vg - ), where
vo = dir(e) is the root direction of Y. Intuitively, the
delay of (Y*, V') describes the label node z would have
when the sequence of directions leading to z arrives
with a delay, thus the last direction in = is missing
and =z is prefixed by the root direction.

Consider a set X x Y of directions. For a node
T € (X xY)*, let hidey (1) be the node in X* obtained
from 7 by replacing each letter (z,y) by the letter

z. For example, the node (0,0) - (1,0) of the 4-ary
({0,1} x {0, 1})-tree corresponds, by hidegg 1y, to the
node 0-1 of the {0, 1}-tree. Note that the nodes (0, 0)-
(1,1),(0,1) - (1,0), and (0,1) - (1,1) of the 4-ary tree
also correspond, by hide g 1y, to the node 0 -1 of the
binary tree. For a Z-labeled X-tree (X*, V'), we define
the Y -widening of (X*,V), denoted widey ((X*,V)),
as the Z-labeled (X xY')-tree ((X xY)*, V') where for
every 7 € (X xY)*, we have V'(7) = V(hidey (1)). As
we explain further in Section 3, nodes 7 and 75 with
hidey (m1) = hidey(m) = 7 are indistinguishable in
widey ((X*,V)) by someone that does not observe Y.
Indeed, for such an observer, both nodes are reached
by traversing T and are labeled by V(7).

2.2 Alternating automata

Alternating tree automata generalize nondeterministic
tree automata and were first introduced in [MS87]. An
alternating tree automaton A = (X, Q, qo, d, @) runs
on full ¥-labeled Y-trees (for an agreed set T of direc-
tions). It consists of a finite set ) of states, an initial
state gg € @, a transition function §, and an accep-
tance condition a (a condition that defines a subset, of
Q%). For aset Y of directions, let BT (Y x Q) be the set
of positive Boolean formulas over T x (); i.e., Boolean
formulas built from elements in ¥ x () using A and
V, where we also allow the formulas true and false
and, as usual, A has precedence over V. The transi-
tion function § : Q@ x ¥ — BF(YT x @) maps a state
and an input letter to a formula that suggests a new
configuration for the automaton. For example, when
T= {07 1} haVing 6(q7 U) = (07 ql) A (0 q2) \ (0 q2) A
(1,¢2) A (1,g3) means that when the automaton is in
state ¢ and reads the letter o, it can either send two
copies, in states g1 and gz, to direction 0 of the tree, or
send a copy in state g2 to direction 0 and two copies,
in states ¢ and g3, to direction 1. Thus, unlike nonde-
terministic tree automata, here the transition function
may require the automaton to send several copies to
the same direction or allow it not to send copies to all
directions.

A run of an alternating automaton A on an in-
put Y-labeled Y-tree (T, V) is a tree (T}, r) in which
the nodes are labeled by elements of T* x ). Each
node of T, corresponds to a node of T. A node in
T, labeled by (z,q), describes a copy of the automa-
ton that reads the node x of T" and visits the state
g- Note that many nodes of T} can correspond to
the same node of T'; in contrast, in a run of a non-
deterministic automaton on (T, V') there is a one-to-
one correspondence between the nodes of the run and
the nodes of the tree. The labels of a node and its
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children have to satisfy the transition function. For
example, if (T, V) is a {0,1}-tree with V(¢) = a and
5(a0,@) = ((0,01)V (0,2)) A((0,45)V (1, 42)), then the
nodes of (T,,r) at level 1 include the label (0,¢q;) or
(0, g2), and include the label (0, ¢3) or (1,¢2). Each in-
finite path p in (T, r) is labeled by a word r(p) in Q“.
Let inf(p) denote the set of states in @) that appear
in r(p) infinitely often. A run (T, r) is accepting iff
all its infinite paths satisfy the acceptance condition.
In Rabin alternating tree automata, a C 29 x 29
and an infinite path p satisfies an acceptance condition
a={(Gy,B1),...,{Gg, By)} iff there exists 1 < i < k
for which inf(p) N G; # @ and inf(p) N B; = . We
refer to the number of pairs in « as the index of 4. An
automaton accepts a tree iff there exists an accepting
run on it. We denote by L£(A) the language of the
automaton A; i.e., the set of all labeled trees that A
accepts. We say that an automaton is nonempty iff
L(A) # 0. For an acceptance condition a over () and
a set S, we denote by a x S the acceptance condition
over () x S obtained from « by replacing each set F
participating in « by the set F' x S. For example, if
a is the Rabin acceptance condition {(G, B)}, then
axS={(GxS,BxS)}

Nondeterministic tree automata can be viewed as a
special case of alternating tree automata, where the
formulas in BT (T x Q) are such that if a formula
is rewritten in disjunctive normal form, then for ev-
ery direction v € Y, there is exactly one element of
{v} x @ in each disjunct. While nondeterministic tree
automata are not less expressive than alternating tree
automata, they are exponentially less succinct:

Theorem 2.1 [MS95] An alternating Rabin tree au-
tomaton with m states and k pairs can be translated to
an equivalent nondeterministic Rabin tree automaton
with m@m*) states and O(mk) pairs.

3 Architectures and the
problem

synthesis

Given sets I and O of input and output signals,
respectively, we can view a process P as a strateqy
f:(2h)* — 29 that maps a finite sequence of sets
of input signals into a set of output signals. We of-
ten refer to the strategy f as the 29-labeled 2!-tree
((21)*, f). Let i be the root direction of 2. When
P interacts with an environment that generates in-
finite input sequences, it associates with each infi-
nite input sequence 41,12, ..., an infinite computation
{20} U f({:‘), {Z] } @] f(Z]) {Zz} @] f(Z] . i2)7 ... over 2,UO.
The interaction of P with all possible input sequences
induces the (27YC)-labeled 2/-tree zray(((27)*, f)).

The environment may have hidden internal signals,
which are not readable by P. Let H denote the set of
hidden signals. Then, a strategy for P is still a func-
tion f: (21)* — 29, but the interaction of P with an
outcome of the environment induces an infinite com-
putation over 2/YOYH and its interaction with all pos-
sible outcomes induces the (2/YOYH)labeled (2/V)-
tree zray(wide ,x)(((27)*, f))). Each node in this tree
has 2/7YHI children', corresponding to the 2/7“H| pos-
sible assignments to I U H. Note that since P cannot
see the signals in H, and thus cannot distinguish be-
tween children that agree on their assignment to sig-
nals in I, the tree above is the 2¥-widening of the
interaction between P and its environment as seen by
P.

In a setting with n processes Py, ..., P,, where pro-
cess P; reads I;, writes O;, and has hidden internal
signals H;, a strategy for P; is a function f; : (2%7)* —
20:UH: “We denote |, ;,, 1i by I, and similarly for O
and H. The n processes Py, ..., P, interact with each
other and may also interact with an environment. We
denote by O.,, the output signals of the environment
(that is, the external input to the n processes), and de-
note by Hgy, the hidden signals of the environment.

Different architectures induce different communica-
tion channels between the processes. We consider here
four classes of architectures (see figure next page). In
all classes, each signal can be written by a single pro-
cess (that is, O; N O; = 0 for all i # j), but can be
read by several processes (that is, possibly I;NI; # 0).

e In a one-way chain, P, reads from the environ-
ment, P, writes to the environment, and all the
other processes read from the process to their
left, and write to the process to their right. For-
mally, Iy = O¢yy, and for all 2 < i < n we have
I; = O;_;. Note that P; cannot read the in-
ternal signals of the process to its left and that
IJo=1u0, =L UO.

e A one-way ring extends a one-way chain by a
communication channel from P, to P;. Thus, P,
reads from both P, and the environment (i.e.,
I = 0, UO¢py), and P, writes to both P, and
the environment.

e In a two-way chain, P, reads from both P, and
the environment and writes to P», P, reads from
P,,_1 and writes to both P,,_; and the environ-
ment, and all the other processes read from the

IWe consider synthesis with respect to mazimal environ-
ments, which provide all possible input sequences. An extension
to non-maximal environment is possible, using the same tech-
niques as in [KMTVO00].
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processes to their left and right, and write to
the processes to their left and right. Formally,
Ii = Ogny UOs, for all 2 < ¢ < mn — 1 we have
I, =0,-1U0;31,and I, = O0,,_1.

e A two-way ring extends a two-way chain by
a communication channel between P, and P;.
Thus, P; reads from Ps, P,, and the environment
(i.e., It = Opny UO2 UO,,), and writes to both Py
and P,, and P, reads from both P, and P, _; and
writes to both Py, P, 1, and the environment.

Note that in all the four classes, and for all i and
j with ¢ < j, the process P; has complete informa-
tion about the input to P;, thus P; can simulate P;
and have complete information also about its output?.
This means, for example, that in a two-way chain,
we could give up the channel from P, to P, letting
P, compute the information along this channel, and
similarly for the other right-to-left channels. While
this would not change the answer to the realizability
question, it may significantly increase the sizes of the
synthesized processes.

=)~ ~n)

One-way chain

Qf. . .99

One-way ring

Two-way chain

Two-way ring

For all the architectures, we define the composition
of strategies fi,..., f, as a function f : (20en»)* —
20VUH that describes the joint behavior of the processes
on an infinite sequence of external input signals. The
exact definition of a composition depends on the par-
ticular architecture as well as on assumptions on the
communication (e.g., whether communication involves
a delay). We define several compositions in Section 5.
In [PRI0], Pnueli and Rosner study one-way channels
(called “hierarchical architectures” there) where com-
munication involves no delay. In this setting, com-
positions are defined as follows. For the strategy
(5), fi), let ((27)", f]) = mem({(2")*, fi)). Re-
call that in a one-way chain, Ogp, = I;. Then, f :
(20env)* — 20UH ig guch that for every o € (20nv)*,

2Indeed P;, for j > i, generates also hidden signals, but these
signals are generated by a strategy that is known to P;, since our
framework assumes that the processes are collaborative, while
the environment is adversarial.

Z;: : :j>
:;: : :j>
N

we have

flo) = fi(o) U fo(fi(0) U fs(f5(f1(0)))U
U Sa(fra G- (f2(fi0) ).

Intuitively, for all 4, the output of P; (and, conse-
quently, the contribution of f; to f), depends on the
history of the outputs of P;_1, namely the memory-
full version of f;_;, which by itself depends on the
memoryfull version of f; o, and so on.

The compo-
sition f induces the computation tree of Py,..., P,,
which is the (2/VOVHUHenw) Jabeled (20envYUHenw ) tree
zray(widegmen.y (((297)*, £))). The transition from
the composition to the computation tree involves two
transformations. First, while the composition f cor-
responds to the composition as seen by the processes,
and thus ignores the signals in H,,, and the nonde-
terminism induced by them, the computation tree cor-
responds to the composition as seen by someone that
sees all signals, which involves a 2H¢n»_widening. In
addition, as the signals in O.,, and H.,, are repre-
sented in the widening of the composition only in its
nodes and not, in its labels, we employ zray and obtain
a tree whose labels refer to all signals.

Given a CTL* formula ¢ over I U O U H U H,p,,
and an architecture Q with processes Pi,..., P,, we
say that v is realizable in ) iff there are strategies
for Py,..., P, whose composition induces a compu-
tation tree that satisfies ¢». The synthesis problem is
then to construct these strategies. The synthesis prob-
lem for one-way chains with complete information is
introduced and solved in [PR90] for specifications in
the linear temporal logic LTL (which is a strict sub-
set of CTL*). The synthesis problem for CTL* for
an architecture with a single process with incomplete
information is introduced and solved in [KV99]. In
this paper, we solve the synthesis problem for CTL*
for the four classes of architectures introduced above.
Our solution is based on automata on infinite trees.
For our purposes, the crucial feature of CTL* is the
following translation of CTL* formulas to alternating
Rabin tree automata.

Theorem 3.1 [KVWO00] Given a CTL* formula i
over a set AP of atomic propositions and a set ¥ of
directions, there exists an alternating Rabin tree au-
tomaton Ay, over 247 -labeled Y -trees, with 2°(¥)
states and two pairs, such that L(Ay y) is ezactly the
set of trees satisfying 1.

4 Useful automata constructions

Let X, Y, and Z be finite sets, and let zg be the root
direction of Z. For an (X x Y)-labeled Z-tree (Z*, f),

www.manaraa.com



we say that (Z*, f) is a composition of an X-labeled Z-
tree (Z*, fx), where mem((Z*, fx)) = (Z*, f%), and
a Y-labeled X-tree (X*, fy) iff for every z; and 25 in
Z and for every o € Z*, we have

e f(e) = fx(e) U fy (e).
e f(z1) = fx(20) U fv (fx(€)).
o f(o-21-20) = fx(20-0-21)U fy(fx(20-0)).

We then say that f = fx+ fy. Foraset T of (X xY)-
labeled Z-trees, the set shapex(T) consists of all Y-
labeled X-trees (X*, fy) for which there exists an X-
labeled Z-tree (Z*, fx) such that the (X x Y')-labeled
Z-tree (Z*, fx + fy) isin T.

Theorem 4.1 Let X, Y, and Z be finite sets. Given
a nondeterministic tree automaton A over (X X
Y')-labeled Z-trees, we can construct an alternating
tree automaton A' over Y -labeled X -trees such that
L(A") = shapex (L(A)) and the automata A" and A
have the same size and indez.

Proof: Let A = (X xY,Q,qo,0,a). Then, A" =
(Y,Q,qo,0d',a), where for every ¢ € Q and y € Y, we

have
6I(Q7y): \/ (.’17,31)/\(.’17,32)/\.../\(-’17,3\7,\)-
z€X,

(81,82,---,8)2|)€(q,{z,y))

Consider first the case where g = gg and A’ reads the
root of the input tree (X*, fy). The letter y read at
the root is fy (€). Since in fx + fy the root is labeled
(fx(€), fv (€)), we proceed according to 6(qo, (x, y)) for
some z which is our guess for fx (). By the definition
of ¢§', each copy of A that is sent to direction z € Z
and visits state s induces a copy of A’ that is sent to
direction = and visits the state s. Since the choice of
z is joint to all z € Z, all the copies of A’ induced
as above are going to read the same letter, which is
our guess for fy(fx(e)). Consider now a copy of A
that reads a node z € Z and visits state s. Recall
that the automaton A’ then has a copy that reads
the node fx(€), visits the state s, and the letter y
read by this copy (and all the other copies that read
the node fx(€)) is our guess for fy(fx(€)). Since in
fx + fy the node z is labeled (fx (z0), fy (fx (€))), we
proceed according to d(s, (z,y)), for some z which is
our guess for fx(zp). Each copy of A that is sent
to direction 2’ € Z and visits state s’ then induces a
copy of A’ that is sent to direction z and visits the
state s’. All these copies are going to read the same
letter, which is our guess for fy (f%(z0)). The same

idea repeats in further levels: a copy of A that reads
anode o271 -29 € Z* and visits state s is associated
with a copy of A’ that reads the node f% (2o - o) and
visits the state s. The letter y read by this copy (and
all the other copies that read the node f%(zo - o)) is
our guess for fy(f% (20 -0)). Since in fx + fy the
node o- 21 - 29 is labeled (fx (z0-0-21), fy (f% (20-0))),
we proceed according to (s, (x,y)) for some = which
is our guess for fx(z9 -0 - 21). All the copies sent to
direction x are going to read the same letter, which is
our guess for fy (fy(z0-0-21)). ]

Given a nondeterministic tree automaton A, let
shape x (A) denote the corresponding automaton A’
constructed in Theorem 4.1. Note that while
shape x (A) returns an alternating tree automaton, it
is defined for a nondeterministic tree automaton A.
Thus, successive applications of shape require an in-
termediate application of the exponential alternation-
removal procedure in Theorem 2.1.

The construction described in Theorem 4.1 will help
us to solve the realizability problem by successively
reducing the number of processes in the architectures.
The two constructions below will handle the external
input to the system and the incomplete information,
and they are presented in [KV99], where they are used
for the synthesis of a single process with incomplete
information.

Theorem 4.2 Given an alternating tree automaton
A over (T x X)-labeled Y-trees, we can construct an
alternating tree automaton A’ over Y.-labeled Y -trees
such that A" accepts a labeled tree (Y*, V') iff A accepts
zray((Y*,V)), and the automata A' and A have the
same size and indez.

Theorem 4.3 Let X, Y, and Z be finite sets. Given
an alternating tree automaton A over Z-labeled (X x
Y')-trees, we can construct an alternating tree automa-
ton A' over Z-labeled X -trees such that A' accepts a
Z-labeled tree (X*, V) iff A accepts the Z-labeled tree
widey ((X*,V)), and the automata A' and A have the
same size and indez.

Finally, since we want our algorithm to be applica-
ble also for settings in which communication involves
a delay, we need a construction that handles such a
delay.

Theorem 4.4 Given an alternating tree automaton
A over ¥-labeled Y -trees, we can construct an alter-
nating tree automaton A' over Y-labeled Y -trees such
that A’ accepts a labeled tree (Y*,V) iff A accepts
delay({(Y*,V)), and the automata A' and A have the

same size and index.
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Given an alternating tree automaton A, let
cover(A), narrowy (A), and wait(A) denote the cor-
responding automata A’ constructed in Theorems 4.2,
4.3 (for a set Y of directions), and 4.4, respectively.

5 Solving the synthesis problem

In this section we study the synthesis problem for
the architectures described in Section 3. We show
that for all the four classes, the problem is decid-
able, with a nonelementary complexity. Thus, given
a CTL* formula ¢, a class C (one-way chain, two-way
chain, one-way ring, or two-way ring), and an integer
n, the complexity of constructing n strategies for n
processes in an architecture of class C that satisfies ¢

is n-exp(|y]).?

One-way chain We assume that communication in-
volves a delay. Thus, the input to P41 at time ¢ is
the output of P; (or the environment, when i = 0) at
time ¢t — 1. Accordingly, we define the composition f
of f1,..., fn as follows. For a string o = zg - 21 - - 2y,
and 7 > 0, let zq - z1---2r_; be either the prefix of
length £k —i 4+ 1 of o, in case k —i > 0, or ¢, in case
k—i+1<0. Also, let zy be the root direction of 27.
Then, f: (271)* — 20YH is defined as follows.

o f(e) = fi(e) U---U fule).

e For o € (2")* with 0 = 21 - - - 23, we have f(0) =
f1(20-21 "'Zkfl)UfZ(f]l(ZO -2 "'Zk72)) U---u
fa(fpo1(z0 21 z5—n)).

Consider a CTL* formula ) over TUOUH U H,p,, .
Recall that in a one-way chain, we have TUO = I UQO.
In order to solve the realizability problem, we build the
following tree automata.

e Ay: an alternating Rabin tree automaton that
accepts a (2I1VOVHUHenw ) Jabeled (271VHenw)-tree
((211WHenw)* £ iff it satisfies ) [see Theorem 3.1].

e Ay: the alternat-
ing Rabin tree automaton wait(Ay). Thus, Ag
accepts a (2I1VOUHUHenw ) Jabeled (271VHenw)-tree
(RROHene)* ) HfE delay ({2119 )*, £)) satis-
fies ¢ [see Theorem 4.4].

o Aj: the alternating Ra-
bin tree automaton cover(Ap). Thus, Aj accepts
a (20VH)-labeled (211YHenv) tree ((271VHenw)* | f)
iff delay(zray(((211VHeno)* £))) satisfies 1) [see
Theorem 4.2].

3

“n-exp(k) is a stack of n exponents with k£ on the top; i.e.,
1-ezp(k) = 20(K) and (i + 1)-exp(k) = 2i-cap(k),

o Aj: the alternating
Rabin tree automaton narrow m...)(Ap). Thus,
Al accepts a (29YH)-labeled 21-tree ((211)*, f)
iff - delay (zray(wide am...)(((2")*, f)))) satisfies
¥ [see Theorem 4.3].

e For1<i<n-—1,

— A;: a nondeterministic Rabin tree au-
tomaton equivalent to A} , [see Theo-
rem 2.1]. Note that the automaton
Ai runs on (2OiUHiUO¢+1UHi+1U---UO"UH")_
labeled QOi*‘—trees, where we take Oy = I.

— Al the  alternating Rabin  au-
tomaton shape(yo,um;)(A;). Thus, Aj runs
on (2(),-+1UHZ-+1U---UO"UH" )—labeled (QOZ-UH,-)_
trees and it accepts a tree ((20:VHi)* f)
iff there is a (29:YHi)-labeled 29i-1-tree
((29:=1)*, £y such that ((29:-1)*, f + f') is
accepted by A; [see Theorem 4.1].

— A+ the alternating Rabin automaton
narrow yu;) (Aj). Thus, A} accepts
a (20i+1UHit1UUORUHR ) Jaheled 27 -tree
((299)*, f) iff u)ide(zHi)(((QO")*,f)) is ac-
cepted by A} [see Theorem 4.3].

Intuitively, in each iteration 1 < ¢ < n, we as-
sume that the strategies of Pp,...,P,_; are given
(they are encapsulated in the transition function of
A;) and the automaton A; accepts all the composi-
tions of P;,... P, that together with the given strate-
gies satisfy 1. Thus, the transition from A; to A;y1
involves an encapsulation of the possible strategies of
P; (and how they affect the behavior required from
P;y1,..., P, in order to satisfy ) into the transition
function of A;.

Lemma 5.1 ¢ is realizable iff A, _, is not empty.

The construction of A; goes via i iterations. Each
iteration involves two automata transformations. One
transformation (narrow) gets and returns an alternat-
ing tree automaton. The other transformation (shape)
gets a nondeterministic tree automaton and return an
alternating tree automaton. While all the transforma-
tions involve no blow-up in the size of the automata,
the fact that shape handles nondeterministic automata
requires the application of an additional transforma-
tion, namely the translation of an alternating tree au-
tomaton to a nondeterministic one. This transforma-
tion involves an exponential blow-up, leading to an
overall nonelementary blow-up.
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Theorem 5.2 The synthesis problem for CTL* and
one-way chains is nonelementary decidable.

Proof: It follows from the constructions described in
Section 4 that the size of A!'_, is (n—1)-ezp(|¢|). The
nonemptiness problem for 4! _; can then be solved in
time n-exp(|y]) [MS95, KV98]. Lemma 5.1 then im-
plies that the realizability problem for ¢ can be solved
in time n-ezp(|]t|). The nonemptiness algorithm can
be extended to produce a witness for the automaton
being nonempty (in fact, a witness that is a memory-
less strategy [Tho95]). A witness for the nonemptiness
of A'_, induces a strategy f, for P,. In order to get
a strategy for P,_;, we combine A" , with f, and
get an automaton that is guaranteed to be nonempty
and whose witness induces a strategy f,—1 for P,_1.
We continue similarly until strategies for all processes
are synthesized. |

A matching nonelementary lower bound is proved (for
LTL formulas) in [PR90] (cf. [PR79]). This lower
bounds applies also to the other architecture.

With appropriate simple modifications (skipping
the “wait construction” and redefining the “shape con-
struction” to ignore the delay), the method described
above can handle one-way channels in which commu-
nication involves no delay (the definition of composi-
tion then coincides with the one of [PR90]). As we
describe below, the method can also be extended to
handle the other classes of architectures described in
Section 3. The differences among the architectures in-
fluence the sets of labels and directions of the trees
over which the automata are defined (for example, in
a one-way ring Ay runs on (29¢nYOn) trees, and in
a two-way ring, it runs on (20:n2YO2U0) trees), in-
fluence the definition of composition, and accordingly
influence the definition of shape y (7T) and the “shape
construction” that handles. For all the architectures,
however, the idea is similar: a successive reduction in
the number of processes, where in each step we omit
a process and encapsulate its possible strategies into
the transition function of intermediate automata.

One-way ring. Recall that in a one-way ring, the
process P; reads signals from both P, and the envi-
ronment. We suggest two alternative modifications to
the method presented for one-way chains. The first is
rather simple: all the intermediate automata we con-
struct maintain (in their alphabet) the input that Py
reads from P,. Then, in the last automaton, which
corresponds to P,’s strategy, we close the ring by re-
quiring the output of P, to agree with the maintained
input. The second approach is cleaner (and it also has

a computational advantage), yet it requires a more
substantial modification. The idea is to start with P,
and proceed in both directions, encapsulating two pro-
cesses in each iteration. The two directions meet at
the automaton Az, whose nonemptiness witnesses a
strategy for Pz that satisfies the tasks inherited to Pz
by both the processes to his left and these to his right.

Two-way chain. The two-way chain architecture is
much richer than that of a one-way chain. Since the
difficulties imposed by incomplete information are or-
thogonal and are handled by the narrow construction,
we describe here the solution for systems with com-
plete information, thus H,,, U H = (. In a two-way
chain, the process P; reads both O;_; and O;41, so
its strategy is a function f; : (20i-1Y0i+1)* 5 20
Accordingly, while in the case of a one-way chain
the reduction of the process P; involves a transition
from an automaton that runs on (20:Y0i+1U-U0R)
labeled 29-1-trees to an automaton that runs on
(20i+1UU0n ) Jabeled 29:-trees, here the reduction of
P; should involve a transition from an automaton that
runs on (20:V0i+1UU0n) Jaheled (20i-1Y0i+1)-trees
to an automaton that runs on (20:+19U0») Jabeled
(20:Y0i+2)_trees. In order to see the modifications
that are therefore needed in the shape construction,
let us first redefine the predicate shape and the com-
position operator it involves.

Let Xifl, XL X,j+1, XH_Q, and X be finite sets,
and let zg and z{ be the root directions of X;_; and
Xiy1 respectively. For our application, X; stands
for 29 and X stands for 20i+3Y-YO0-  For an
(Xz X Xi+] X Xi+2 X X)—labeled (Xi,] X XH])—tree
(Xim1 x Xiy1)*, f), we say that ((X;—1 X Xiy1)", f)
is a composition of an X;-labeled (X;—; X X;y1)-
tree ((Xi,] X Xi+1)*=f1> and an (Xi+1 X Xi+2 X X)—
labeled (X; x X;40)-tree ((X; x X;10)*, fo) iff for ev-
ery (z1,21) and (22, 25) in X; 1 x X;11 and for every
o€ (X;—1 X Xj+1)*, we have (f' and f| are the mem-
oryfull versions of f and f'):

e f(e) = (fi(e), f2(e)).
e f({z1.21)) = (fi({20, 20)), f2(fi(€)))-

o flo - (z,21) - (21,21)) = (fil(z0.20) - 0 -
(21,21)), f2(f1 ({20, 20) - 0) & [ ((20, 20) - 0) | x,45))
where @ is bitwise concatenation (e.g., y1-y2 B Y3 -
Ya = (Y1,¥3) - (y2,94)) and 7)x, ., is the projection
of 7 on XH_Q.

We then say that f = fi + fi. Intuitively, f de-
termines its Xj;-element according to f; and deter-
mines the (X;31 X X;12 X X)-element by applying
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f2 on an interleaving of an application of f|, which
gives the X; element and an application of f’' on a
strict prefix of the input, which returns an element in
X; x X411 X X429 x X and is then projected on X;4».
In addition, since we assume that communication in-
volves a delay, f ignores the last letters in a sequence
and refers instead to the root directions.

For a set T of (X; x X;11 X X102 x X)-labeled
(Xi—1 x Xjj1)-trees, the set shapey, . x,,,(7T) con-
sists of all (X;11 x X;10 x X)-labeled (X; X X;y2)-
trees ((X; x X;y2)*, fa) for which there exists an X;-
labeled (X;_1 X X;11)-tree ((X;—1 x Xit1)*, f1) such
that <(Xi71 X Xi+1)*= f] + fz) isin T.

The shape construction in Theorem 4.1 can be mod-
ified to handle the definition of shape above. Essen-
tially, while in the current construction the automaton
A’ guesses in each transition a direction z to proceed
with, in the new construction A4’ needs to guess two
elements, corresponding to both X; and X, ,, and it
should remember the X; 5 element for the projection
described above.

Two-way ring. The solution for two-way rings is
based on the modified shape construction described
for two-way chains and the “two-direction reasoning”
described for one-way rings.

The important common property of the four classes
we handle is the fact that there are no two processes
both reading input from the envirponmrnt. Conse-
quently, the processes can be linearly ordered accord-
ing to the signals they know. More architectures fall
in this category. For example, it is possible to replace
a single processes in a chain by a group of processes
that share the same knowladge, and adjust the synthe-
sis algorithms accordingly. An exact characterization
of architectures for which the synthesis problem is de-
cidable is an open problem.

6 Discussion

One of the most significant developments in the
area of system verification over the last decade is the
development, of algorithmic methods for verifying tem-
poral specifications of finite-state systems [CGP99].
This derives its significance both from the fact that
many synchronization and communication protocols
can be modeled as finite-state systems, as well as from
the great ease of use of fully algorithmic methods. A
frequent criticism against this approach, however, is
that verification is done after significant resources have
already been invested in the development of the pro-
gram. Since systems typically contain errors, verifica-
tion simply becomes part of the development process.

The critics argue that the desired goal is to use the
specification in the system development process in or-
der to guarantee the design of correct systems. This
is exactly what synthesis algorithms do. Despite this
criticism, synthesis tools are not as popular in the in-
dustry as verification tools. There are several reasons
for that: the scope of synthesis algorithms has been
quite limited, their complexity is high, and they do not
always produce practical systems, where practicality
is measured in a variety of ways, such as optimality
(say, number of latches required for implementing the
system in hardware, or number of messages needed to
be passed between the underlying processes), testabil-
ity (the ability to test hardware without access to all
the internal variables), and the like.

In this paper, we significantly extended the scope
of synthesis to include many practical applications.
We claim that the high complexity of the problem is
not really a serious objection to the potential useful-
ness of synthesis. First, we note that experience with
verification shows that nonelementary algorithms can
nevertheless be practical, since the worst-case com-
plexity does not arise often. For example, while the
model-checking problem for specifications in second-
order logic has nonelementary complexity, the model-
checking tool MoNA [EKM98, K1a98] successfully ver-
ifies many specifications given in second-order logic.
Second, we argue that synthesis is not harder than
verification. This may sound as a wishful thinking, as
it contradicts the known fact that while verification is
easy (linear in the size of the model and at most ex-
ponential in the size of the specification), synthesis is
hard (nonelementary). There is, however, something
misleading in this fact: while the complexity of synthe-
sis is given in terms of the specification, the complexity
of verification is given with respect to both the speci-
fication and the (much bigger) system. In particular,
in a distributed setting, it is shown in [Ros92] that
there are LTL specifications ¢, of length O(n), and
architectures with k processes such that the smallest
strategy that realizes v,, in the given architecture has
k-exp(n) states. What is the complexity of verifying
whether a system satisfies ¢,,?7 Even if verification is
linear in the size of the system, it would be nonele-
mentary in n for correct systems, just as the synthesis
problem, since such systems necessarily have at least
k-exp(n) states!

In summary, we believe that the real challenge that
synthesis algorithms and tools face in the coming years
is mostly not that dealing with computational com-
plexity, but rather that of making automatically syn-
thesized systems more practically useful.
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