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Synthesizing Distributed SystemsOrna KupfermanHebrew University� Moshe Y. VardiRi
e UniversityyAbstra
tIn system synthesis, we transform a spe
i�
ationinto a system that is guaranteed to satisfy the spe
i�-
ation. When the system is distributed, the goal is to
onstru
t the system's underlying pro
esses. Resultson multi-player games imply that the synthesis prob-lem for linear spe
i�
ations is unde
idable for generalar
hite
tures, and is nonelementary de
idable for hi-erar
hi
al ar
hite
tures, where the pro
esses are lin-early ordered and information among them 
ows inone dire
tion. In this paper we present a signi�
antextension of this result. We handle both linear andbran
hing spe
i�
ations, and we show that a suÆ
ient
ondition for de
idability of the synthesis problem isa linear or 
y
li
 order among the pro
esses, in whi
hinformation 
ows in either one or both dire
tions. Wealso allow the pro
esses to have internal hidden vari-ables, and we 
onsider 
ommuni
ations with and with-out delay. Many pra
ti
al appli
ations fall into this
lass.1 Introdu
tionIn system synthesis, we transform a spe
i�
ationinto a system that is guaranteed to satisfy the spe
i-�
ation. Early work on synthesis 
onsider 
losed sys-tems. There, a system that meets the spe
i�
ation
an be extra
ted from a 
onstru
tive proof that thespe
i�
ation is satis�able [MW80, EC82℄. As arguedin [ALW89, Dil89, PR89a℄, su
h synthesis paradigmsare not of mu
h interest when applied to open sys-tems, whi
h intera
t with an environment. While syn-thesis that is based on satis�ability assumes no envi-ronment or a 
ooperative one, synthesis of open sys-tems should assume a hostile environment, and shouldgenerate a system that satis�es the spe
i�
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matter how the environment behaves. The work in[ALW89, PR89a℄ formulated the synthesis problem interms of a game between the system and the envi-ronment, and is 
losely related to Chur
h's solvabilityproblem [Chu63℄. Given sets I and O of input andoutput signals, respe
tively, we 
an view a system asa strategy P : (2I)� ! 2O that maps a �nite sequen
eof sets of input signals (the behavior of the environ-ment so far) into a set of output signals (the rea
tionof the system to this behavior).When P intera
ts with an environment that gener-ates in�nite input sequen
es, it asso
iates with ea
hinput sequen
e an in�nite 
omputation over 2I[O.We say that a spe
i�
ation  is realizable i� thereis a strategy all of whose 
omputations satisfy  ,in 
ase  is a linear spe
i�
ation, or a strategywhose indu
ed 
omputation tree satis�es  , in 
ase is a bran
hing spe
i�
ation. Synthesis of  thenamounts to 
onstru
ting su
h a strategy. Solutionsfor the realizability and synthesis problems for spe
-i�
ations in the linear temporal logi
 LTL are pre-sented in [ALW89, PR89a℄. The solutions are ex-tended in [PR89b, Var95℄ to asyn
hronous systemsand in [KV99℄ to systems with in
omplete informa-tion and spe
i�
ations in the bran
hing temporal logi
CTL?. Methods developed for synthesis of open sys-tems are appli
able also for supervisory 
ontrol, whereinstead of hostile environments we 
onsider 
ollabora-tive 
ontrollers of nondeterministi
 systems [RW89℄.While the transition to open systems has signi�-
antly broaden the s
ope of synthesis to real-life de-signs, it is still limited to settings in whi
h the opensystem 
onsists of a single pro
ess. In a more real-isti
 setting, that of a distributed system, the inputto the synthesis problem 
onsists of both the spe
-i�
ation and an ar
hite
ture, whi
h may 
onsist ofmore than one pro
ess and des
ribes the 
ommuni-
ation 
hannels between the di�erent pro
esses. Moreformally, we assume a setting with n pro
esses, withpro
ess i referring to sets Ii, Oi, and Hi, of input,output, and hidden (internal) signals (input signalsmay be external ; i.e., generated by the environment),and we want to 
onstru
t for ea
h pro
ess a strat-
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egy Pi : (2Ii)� ! 2Oi[Hi so that the 
omposition ofthe strategies satis�es the spe
i�
ation. The ar
hite
-ture is given by a set of 
onditions like O2 [ O4 � I3(\the only 
hannels to P3 are from P2 to P4"). Theexa
t de�nition of the 
omposition of the strategiesthen depends on assumptions on the 
ommuni
ation(e.g., whether 
ommuni
ation involves a delay). If, forexample, we want to synthesize �ve dining philoso-phers [Dij72℄, we 
an spe
ify in temporal logi
 themutual ex
lusion and non-starvation requirements forthe philosophers, spe
ify a two-way ring with �ve pro-
esses, and ask the synthesis pro
edure to 
onstru
tappropriate strategies for the pro
esses. Clearly, a so-lution for the dining philosophers that refers to a singlepro
ess is not of mu
h interest.There are two possible ways to approa
h the syn-thesis problem for distributed systems. One approa
his to use a synthesis pro
edure for a single pro
ess, andthen de
ompose the pro
ess a

ording to the given ar-
hite
ture [EC82, MW84℄. While this approa
h hasa 
omputational advantage, known de
omposition al-gorithms are not 
omplete in the sense that a spe
i-�
ation may be realizable with respe
t to a given ar-
hite
ture yet the de
omposition algorithm would fail[PR90℄. Thus, one 
an view de
omposition as a heuris-ti
 for the synthesis problem, whi
h is not guaranteedto work. The se
ond approa
h is to refer to the ar
hi-te
ture of the distributed system from the outset and
onstru
t the underlying pro
esses dire
tly [PR90℄.Results on multi-player games imply that the real-izability problem for general distributed systems is un-de
idable [PR79, PR90℄ (the results in [PR79℄ refer tomultiple-person alternating Turing ma
hines and areextended in [PR90℄ to the synthesis setting). Essen-tially, there is an ar
hite
ture 
 (in fa
t, a very simplear
hite
ture, 
onsisting of two independent pro
essesP1 and P2 that intera
t with the same environment;that is I1 \ (O2 [ H2) = ; and I2 \ (O1 [ H1) = ;)su
h that for every deterministi
 Turing ma
hine M ,there is an LTL formula  M su
h that M halts onthe empty tape i�  M is realizable in 
. The redu
-tion is heavily based on P1 and P2 being independent,and it fails, for example, if we assume that P2 getsits input from P1 (i.e., O1 � I2). Indeed, it is shownin [PR79, PR90℄ that on
e we 
onsider hierar
hi
al ar-
hite
tures, in whi
h the pro
esses are linearly orderedand information 
ows in one dire
tion, the realizabilityproblem is nonelementary de
idable for spe
i�
ationsin LTL.The de
idability result in [PR90℄ su�ers from twolimitations. First, when we synthesize a system froman LTL spe
i�
ation  , we require  to hold in all the


omputations of the system. Consequently, we 
an-not impose possibility requirements on the system (
f.[DTV99℄). In the dining-philosophers example, whilewe 
an spe
ify in LTL mutual ex
lusion, we 
annotspe
ify deadlo
k freedom (every �nite intera
tion 
anbe extended so that a philosopher eventually eats). Inorder to express possibility properties, we should spe
-ify the system using bran
hing temporal logi
, whi
henables both universal and existential path quanti�-
ation [EH86, Eme90℄. Se
ond, and more 
ru
ially,the algorithm in [PR90℄ is not appli
able for ar
hite
-tures that are not hierar
hi
al, and real-life designsare rarely based on hierar
hi
al ar
hite
tures. We donot 
ount the nonelementary 
omplexity as a limita-tion, as it is a

ompanied by a mat
hing lower boundand, as we dis
uss further in Se
tion 6, the worst-
ase
omplexity rarely appears in pra
ti
e.In this paper we remove both limitations. We 
on-sider spe
i�
ations in the bran
hing temporal logi
CTL? (whi
h subsumes LTL), and we handle all ar
hi-te
tures in whi
h there is a linear or 
y
li
 order amongthe pro
esses, in whi
h information 
ows in either oneor both dire
tions. Thus, our ar
hite
tures 
an be ei-ther 
hains or rings with both one-way and two-way
ommuni
ation 
hannels. In addition, we allow thepro
esses to have internal hidden variables, and we
onsider 
ommuni
ations with and without delay. Weshow that the realizability problem stays de
idable inall these 
ases. The solution we present is based onalternating tree automata, whi
h separate the logi
aland algorithmi
 aspe
ts of the problem: given a spe
-i�
ation  and an ar
hite
ture 
, we 
onstru
t an au-tomaton A
; su
h that  is realizable in 
 i� A
; isnot empty. To 
he
k realizability, the automaton hasto be tested for nonemptiness [EJ88, PR89a, KV98℄.The nonemptiness algorithm also synthesizes the pro-
esses in 
 that together realize  .We argue that the results in the paper signi�
antlyextend the s
ope of synthesis for distributed systems,as 
ommonly used ar
hite
ture belong to the 
lass ofar
hite
tures we handle [Tan87℄. Examples of appli
a-tions of these ar
hite
tures in
lude various 
ommuni-
ation proto
ols in whi
h 
ommuni
ation pro
eeds inlayers. For example, the so-
alled OSI model 
onsistsof a seven-layer proto
ol sta
k (Appli
ation, Presen-tation, Session, Transport, Network, Data link, andPhysi
al layers), where every layer 
ommuni
ates withthe layer above it and the layer below it. The envi-ronment talks to the top layer and the bottom layer[Man99℄. Ar
hite
tures with two-way 
ommuni
ation
hannels are 
ommon in s
ienti�
 
omputations, saywhen we iterate in order to solve a di�erential equa-
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tion and ea
h pro
ess works on part of the 
omputeddomain. Then, it is useful to divide the domain tolayers so that in ea
h iteration every layer updates itsneighbors with its results from the previous iteration[PTVF92℄.2 Preliminaries2.1 Trees and labeled treesGiven a �nite set �, an �-tree is a set T � �� su
hthat if x � � 2 T , where x 2 �� and � 2 �, then alsox 2 T . When � is not important or 
lear from the
ontext, we 
all T a tree. When T = ��, we say thatT is full. The elements of T are 
alled nodes, and theempty word � is the root of T . For every x 2 T , thenodes x � � 2 T where � 2 � are the 
hildren of x.Ea
h node x of T has a dire
tion, dir(x) in �. Thedire
tion of � is �0, for some designated �0 2 �, 
alledthe root dire
tion. The dire
tion of a node x � � is �.Given two �nite sets � and �, a �-labeled �-tree isa pair hT; V i where T is an �-tree and V : T ! �maps ea
h node of T to a letter in �. When �and � are not important or 
lear from the 
ontext,we 
all hT; V i a labeled tree. For a �-labeled �-tree h��; V i, we de�ne the memoryfull version ofh��; V i, denoted mem(h��; V i) as the �+-labeled �-tree h��; V 0i where V 0(�) = V (�), for � 2 � we haveV 0(�) = V (�) � V (�), and for all x 2 �+ and � 2 �we have V 0(x � �) = V 0(x) � V (�). Thus, the label ofa node x in mem(h��; V i) is the word obtained by
on
atenating the labels of all the pre�xes (in
luding�) of x in h��; V i.For a �-labeled �-tree h��; V i, we de�ne the x-rayof h��; V i, denoted xray(h��; V i), as the (� � �)-labeled �-tree h��; V 0i in whi
h ea
h node is labeledby both its dire
tion and its labeling in h��; V i. Thus,for every x 2 ��, we have V 0(x) = hdir(x); V (x)i. Es-sentially, the labels in xray(h��; V i) 
ontain informa-tion not only about the surfa
e of h��; V i (its labels)but also about its skeleton (its nodes).For a �-labeled �-tree h��; V i, we de�ne the delayof h��; V i, denoted delay(h��; V i), as the �-labeled�-tree h��; V 0i in whi
h V 0(�) = V (�) and for all x 2�� and � 2 �, we have V 0(x � �) = V (�0 � x), where�0 = dir(�) is the root dire
tion of �. Intuitively, thedelay of h��; V i des
ribes the label node x would havewhen the sequen
e of dire
tions leading to x arriveswith a delay, thus the last dire
tion in x is missingand x is pre�xed by the root dire
tion.Consider a set X � Y of dire
tions. For a node� 2 (X�Y )�, let hideY (�) be the node in X� obtainedfrom � by repla
ing ea
h letter hx; yi by the letter

x. For example, the node h0; 0i � h1; 0i of the 4-ary(f0; 1g� f0; 1g)-tree 
orresponds, by hidef0;1g, to thenode 0 �1 of the f0; 1g-tree. Note that the nodes h0; 0i�h1; 1i; h0; 1i � h1; 0i, and h0; 1i � h1; 1i of the 4-ary treealso 
orrespond, by hidef0;1g, to the node 0 � 1 of thebinary tree. For a Z-labeledX-tree hX�; V i, we de�nethe Y -widening of hX�; V i, denoted wideY (hX�; V i),as the Z-labeled (X�Y )-tree h(X�Y )�; V 0i where forevery � 2 (X�Y )�, we have V 0(�) = V (hideY (�)). Aswe explain further in Se
tion 3, nodes �1 and �2 withhideY (�1) = hideY (�2) = � are indistinguishable inwideY (hX�; V i) by someone that does not observe Y .Indeed, for su
h an observer, both nodes are rea
hedby traversing � and are labeled by V (�).2.2 Alternating automataAlternating tree automata generalize nondeterministi
tree automata and were �rst introdu
ed in [MS87℄. Analternating tree automaton A = h�; Q; q0; Æ; �i runson full �-labeled �-trees (for an agreed set � of dire
-tions). It 
onsists of a �nite set Q of states, an initialstate q0 2 Q, a transition fun
tion Æ, and an a

ep-tan
e 
ondition � (a 
ondition that de�nes a subset ofQ!). For a set � of dire
tions, let B+(��Q) be the setof positive Boolean formulas over ��Q; i.e., Booleanformulas built from elements in � � Q using ^ and_, where we also allow the formulas true and falseand, as usual, ^ has pre
eden
e over _. The transi-tion fun
tion Æ : Q � � ! B+(� � Q) maps a stateand an input letter to a formula that suggests a new
on�guration for the automaton. For example, when� = f0; 1g, having Æ(q; �) = (0; q1) ^ (0; q2) _ (0; q2) ^(1; q2) ^ (1; q3) means that when the automaton is instate q and reads the letter �, it 
an either send two
opies, in states q1 and q2, to dire
tion 0 of the tree, orsend a 
opy in state q2 to dire
tion 0 and two 
opies,in states q2 and q3, to dire
tion 1. Thus, unlike nonde-terministi
 tree automata, here the transition fun
tionmay require the automaton to send several 
opies tothe same dire
tion or allow it not to send 
opies to alldire
tions.A run of an alternating automaton A on an in-put �-labeled �-tree hT; V i is a tree hTr; ri in whi
hthe nodes are labeled by elements of �� � Q. Ea
hnode of Tr 
orresponds to a node of T . A node inTr, labeled by (x; q), des
ribes a 
opy of the automa-ton that reads the node x of T and visits the stateq. Note that many nodes of Tr 
an 
orrespond tothe same node of T ; in 
ontrast, in a run of a non-deterministi
 automaton on hT; V i there is a one-to-one 
orresponden
e between the nodes of the run andthe nodes of the tree. The labels of a node and its
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hildren have to satisfy the transition fun
tion. Forexample, if hT; V i is a f0; 1g-tree with V (�) = a andÆ(q0; a) = ((0; q1)_ (0; q2))^ ((0; q3)_ (1; q2)), then thenodes of hTr; ri at level 1 in
lude the label (0; q1) or(0; q2), and in
lude the label (0; q3) or (1; q2). Ea
h in-�nite path � in hTr; ri is labeled by a word r(�) in Q!.Let inf (�) denote the set of states in Q that appearin r(�) in�nitely often. A run hTr; ri is a

epting i�all its in�nite paths satisfy the a

eptan
e 
ondition.In Rabin alternating tree automata, � � 2Q � 2Q,and an in�nite path � satis�es an a

eptan
e 
ondition� = fhG1; B1i; : : : ; hGk ; Bkig i� there exists 1 � i � kfor whi
h inf (�) \ Gi 6= ; and inf (�) \ Bi = ;. Werefer to the number of pairs in � as the index of A. Anautomaton a

epts a tree i� there exists an a

eptingrun on it. We denote by L(A) the language of theautomaton A; i.e., the set of all labeled trees that Aa

epts. We say that an automaton is nonempty i�L(A) 6= ;. For an a

eptan
e 
ondition � over Q anda set S, we denote by �� S the a

eptan
e 
onditionover Q � S obtained from � by repla
ing ea
h set Fparti
ipating in � by the set F � S. For example, if� is the Rabin a

eptan
e 
ondition fhG;Big, then�� S = fhG� S;B � Sig.Nondeterministi
 tree automata 
an be viewed as aspe
ial 
ase of alternating tree automata, where theformulas in B+(� � Q) are su
h that if a formulais rewritten in disjun
tive normal form, then for ev-ery dire
tion � 2 �, there is exa
tly one element off�g�Q in ea
h disjun
t. While nondeterministi
 treeautomata are not less expressive than alternating treeautomata, they are exponentially less su

in
t:Theorem 2.1 [MS95℄ An alternating Rabin tree au-tomaton with m states and k pairs 
an be translated toan equivalent nondeterministi
 Rabin tree automatonwith mO(mk) states and O(mk) pairs.3 Ar
hite
tures and the synthesisproblemGiven sets I and O of input and output signals,respe
tively, we 
an view a pro
ess P as a strategyf : (2I)� ! 2O that maps a �nite sequen
e of setsof input signals into a set of output signals. We of-ten refer to the strategy f as the 2O-labeled 2I -treeh(2I)�; fi. Let i0 be the root dire
tion of 2I . WhenP intera
ts with an environment that generates in-�nite input sequen
es, it asso
iates with ea
h in�-nite input sequen
e i1; i2; : : :, an in�nite 
omputationfi0g[ f("); fi1g[ f(i1); fi2g[ f(i1 � i2); : : : over 2I[O.The intera
tion of P with all possible input sequen
esindu
es the (2I[O)-labeled 2I-tree xray(h(2I )�; fi).

The environment may have hidden internal signals,whi
h are not readable by P . Let H denote the set ofhidden signals. Then, a strategy for P is still a fun
-tion f : (2I)� ! 2O, but the intera
tion of P with anout
ome of the environment indu
es an in�nite 
om-putation over 2I[O[H , and its intera
tion with all pos-sible out
omes indu
es the (2I[O[H)-labeled (2I[H)-tree xray(wide (2H)(h(2I )�; fi)). Ea
h node in this treehas 2jI[Hj 
hildren1, 
orresponding to the 2jI[Hj pos-sible assignments to I [H . Note that sin
e P 
annotsee the signals in H , and thus 
annot distinguish be-tween 
hildren that agree on their assignment to sig-nals in I , the tree above is the 2H-widening of theintera
tion between P and its environment as seen byP . In a setting with n pro
esses P1; : : : ; Pn, where pro-
ess Pi reads Ii, writes Oi, and has hidden internalsignals Hi, a strategy for Pi is a fun
tion fi : (2Ii)� !2Oi[Hi . We denoteS1�i�n Ii by I , and similarly for Oand H . The n pro
esses P1; : : : ; Pn intera
t with ea
hother and may also intera
t with an environment. Wedenote by Oenv the output signals of the environment(that is, the external input to the n pro
esses), and de-note by Henv the hidden signals of the environment.Di�erent ar
hite
tures indu
e di�erent 
ommuni
a-tion 
hannels between the pro
esses. We 
onsider herefour 
lasses of ar
hite
tures (see �gure next page). Inall 
lasses, ea
h signal 
an be written by a single pro-
ess (that is, Oi \ Oj = ; for all i 6= j), but 
an beread by several pro
esses (that is, possibly Ii\Ij 6= ;).� In a one-way 
hain, P1 reads from the environ-ment, Pn writes to the environment, and all theother pro
esses read from the pro
ess to theirleft, and write to the pro
ess to their right. For-mally, I1 = Oenv , and for all 2 � i � n we haveIi = Oi�1. Note that Pi 
annot read the in-ternal signals of the pro
ess to its left and thatI [ O = I [ On = I1 [ O.� A one-way ring extends a one-way 
hain by a
ommuni
ation 
hannel from Pn to P1. Thus, P1reads from both Pn and the environment (i.e.,I1 = On [ Oenv), and Pn writes to both P1 andthe environment.� In a two-way 
hain, P1 reads from both P2 andthe environment and writes to P2, Pn reads fromPn�1 and writes to both Pn�1 and the environ-ment, and all the other pro
esses read from the1We 
onsider synthesis with respe
t to maximal environ-ments, whi
h provide all possible input sequen
es. An extensionto non-maximal environment is possible, using the same te
h-niques as in [KMTV00℄.



www.manaraa.com

pro
esses to their left and right, and write tothe pro
esses to their left and right. Formally,I1 = Oenv [ O2, for all 2 � i � n � 1 we haveIi = Oi�1 [ Oi+1, and In = On�1.� A two-way ring extends a two-way 
hain bya 
ommuni
ation 
hannel between Pn and P1.Thus, P1 reads from P2, Pn, and the environment(i.e., I1 = Oenv [O2[On), and writes to both P2and Pn, and Pn reads from both P1 and Pn�1 andwrites to both P1, Pn�1, and the environment.Note that in all the four 
lasses, and for all i andj with i < j, the pro
ess Pi has 
omplete informa-tion about the input to Pj , thus Pi 
an simulate Pjand have 
omplete information also about its output2.This means, for example, that in a two-way 
hain,we 
ould give up the 
hannel from P2 to P1, lettingP1 
ompute the information along this 
hannel, andsimilarly for the other right-to-left 
hannels. Whilethis would not 
hange the answer to the realizabilityquestion, it may signi�
antly in
rease the sizes of thesynthesized pro
esses.
Two-way ring
p2p2pn: : : pn: : :p1 p2p1 p2One-way 
hainOne-way ring

p3 : : : pn: : :p1 p3 : : : pn: : :p1 Two-way 
hain
For all the ar
hite
tures, we de�ne the 
ompositionof strategies f1; : : : ; fn as a fun
tion f : (2Oenv )� !2O[H that des
ribes the joint behavior of the pro
esseson an in�nite sequen
e of external input signals. Theexa
t de�nition of a 
omposition depends on the par-ti
ular ar
hite
ture as well as on assumptions on the
ommuni
ation (e.g., whether 
ommuni
ation involvesa delay). We de�ne several 
ompositions in Se
tion 5.In [PR90℄, Pnueli and Rosner study one-way 
hannels(
alled \hierar
hi
al ar
hite
tures" there) where 
om-muni
ation involves no delay. In this setting, 
om-positions are de�ned as follows. For the strategyh(2Ii)�; fii, let h(2Ii)�; f 0ii = mem(h(2Ii)�; fii). Re-
all that in a one-way 
hain, Oenv = I1. Then, f :(2Oenv )� ! 2O[H is su
h that for every � 2 (2Oenv )�,2Indeed Pj , for j > i, generates also hidden signals, but thesesignals are generated by a strategy that is known to Pi, sin
e ourframework assumes that the pro
esses are 
ollaborative, whilethe environment is adversarial.

we havef(�) = f1(�) [ f2(f 01(�)) [ f3(f 02(f 01(�)))[: : : [ fn(f 0n�1(� � � (f 02(f 01(�))) � � �)):Intuitively, for all i, the output of Pi (and, 
onse-quently, the 
ontribution of fi to f), depends on thehistory of the outputs of Pi�1, namely the memory-full version of fi�1, whi
h by itself depends on thememoryfull version of fi�2, and so on.The 
ompo-sition f indu
es the 
omputation tree of P1; : : : ; Pn,whi
h is the (2I[O[H[Henv )-labeled (2Oenv[Henv)-treexray(wide (2Henv )(h(2Oenv )�; fi)). The transition fromthe 
omposition to the 
omputation tree involves twotransformations. First, while the 
omposition f 
or-responds to the 
omposition as seen by the pro
esses,and thus ignores the signals in Henv and the nonde-terminism indu
ed by them, the 
omputation tree 
or-responds to the 
omposition as seen by someone thatsees all signals, whi
h involves a 2Henv -widening. Inaddition, as the signals in Oenv and Henv are repre-sented in the widening of the 
omposition only in itsnodes and not in its labels, we employ xray and obtaina tree whose labels refer to all signals.Given a CTL? formula  over I [ O [ H [ Henv ,and an ar
hite
ture 
 with pro
esses P1; : : : ; Pn, wesay that  is realizable in 
 i� there are strategiesfor P1; : : : ; Pn whose 
omposition indu
es a 
ompu-tation tree that satis�es  . The synthesis problem isthen to 
onstru
t these strategies. The synthesis prob-lem for one-way 
hains with 
omplete information isintrodu
ed and solved in [PR90℄ for spe
i�
ations inthe linear temporal logi
 LTL (whi
h is a stri
t sub-set of CTL?). The synthesis problem for CTL? foran ar
hite
ture with a single pro
ess with in
ompleteinformation is introdu
ed and solved in [KV99℄. Inthis paper, we solve the synthesis problem for CTL?for the four 
lasses of ar
hite
tures introdu
ed above.Our solution is based on automata on in�nite trees.For our purposes, the 
ru
ial feature of CTL? is thefollowing translation of CTL? formulas to alternatingRabin tree automata.Theorem 3.1 [KVW00℄ Given a CTL? formula  over a set AP of atomi
 propositions and a set � ofdire
tions, there exists an alternating Rabin tree au-tomaton A�; over 2AP -labeled �-trees, with 2O(j j)states and two pairs, su
h that L(A�; ) is exa
tly theset of trees satisfying  .4 Useful automata 
onstru
tionsLetX , Y , and Z be �nite sets, and let z0 be the rootdire
tion of Z. For an (X�Y )-labeled Z-tree hZ�; fi,
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we say that hZ�; fi is a 
omposition of anX-labeled Z-tree hZ�; fXi, where mem(hZ�; fXi) = hZ�; f 0Xi, anda Y -labeled X-tree hX�; fY i i� for every z1 and z2 inZ and for every � 2 Z�, we have� f(�) = fX(�) [ fY (�).� f(z1) = fX(z0) [ fY (f 0X(�)).� f(� � z1 � z2) = fX(z0 � � � z1) [ fY (f 0X(z0 � �)).We then say that f = fX+fY . For a set T of (X�Y )-labeled Z-trees, the set shapeX(T ) 
onsists of all Y -labeled X-trees hX�; fY i for whi
h there exists an X-labeled Z-tree hZ�; fXi su
h that the (X�Y )-labeledZ-tree hZ�; fX + fY i is in T .Theorem 4.1 Let X, Y , and Z be �nite sets. Givena nondeterministi
 tree automaton A over (X �Y )-labeled Z-trees, we 
an 
onstru
t an alternatingtree automaton A0 over Y -labeled X-trees su
h thatL(A0) = shapeX (L(A)) and the automata A0 and Ahave the same size and index.Proof: Let A = hX � Y;Q; q0; Æ; �i. Then, A0 =hY;Q; q0; Æ0; �i, where for every q 2 Q and y 2 Y , wehaveÆ0(q; y) = _x2X;hs1;s2;:::;sjZji2Æ(q;hx;yi)(x; s1) ^ (x; s2) ^ : : : ^ (x; sjZj):Consider �rst the 
ase where q = q0 and A0 reads theroot of the input tree hX�; fY i. The letter y read atthe root is fY (�). Sin
e in fX + fY the root is labeledhfX(�); fY (�)i, we pro
eed a

ording to Æ(q0; hx; yi) forsome x whi
h is our guess for fX(�). By the de�nitionof Æ0, ea
h 
opy of A that is sent to dire
tion z 2 Zand visits state s indu
es a 
opy of A0 that is sent todire
tion x and visits the state s. Sin
e the 
hoi
e ofx is joint to all z 2 Z, all the 
opies of A0 indu
edas above are going to read the same letter, whi
h isour guess for fY (fX (�)). Consider now a 
opy of Athat reads a node z 2 Z and visits state s. Re
allthat the automaton A0 then has a 
opy that readsthe node fX(�), visits the state s, and the letter yread by this 
opy (and all the other 
opies that readthe node fX(�)) is our guess for fY (fX(�)). Sin
e infX + fY the node z is labeled hfX(z0); fY (fX(�))i, wepro
eed a

ording to Æ(s; hx; yi), for some x whi
h isour guess for fX(z0). Ea
h 
opy of A that is sentto dire
tion z0 2 Z and visits state s0 then indu
es a
opy of A0 that is sent to dire
tion x and visits thestate s0. All these 
opies are going to read the sameletter, whi
h is our guess for fY (f 0X(z0)). The same

idea repeats in further levels: a 
opy of A that readsa node � � z1 � z2 2 Z� and visits state s is asso
iatedwith a 
opy of A0 that reads the node f 0X(z0 � �) andvisits the state s. The letter y read by this 
opy (andall the other 
opies that read the node f 0X(z0 � �)) isour guess for fY (f 0X(z0 � �)). Sin
e in fX + fY thenode � �z1 �z2 is labeled hfX (z0 �� �z1); fY (f 0X(z0 ��))i,we pro
eed a

ording to Æ(s; hx; yi) for some x whi
his our guess for fX(z0 � � � z1). All the 
opies sent todire
tion x are going to read the same letter, whi
h isour guess for fY (f 0X(z0 � � � z1)).Given a nondeterministi
 tree automaton A, letshapeX(A) denote the 
orresponding automaton A0
onstru
ted in Theorem 4.1. Note that whileshapeX(A) returns an alternating tree automaton, itis de�ned for a nondeterministi
 tree automaton A.Thus, su

essive appli
ations of shape require an in-termediate appli
ation of the exponential alternation-removal pro
edure in Theorem 2.1.The 
onstru
tion des
ribed in Theorem 4.1 will helpus to solve the realizability problem by su

essivelyredu
ing the number of pro
esses in the ar
hite
tures.The two 
onstru
tions below will handle the externalinput to the system and the in
omplete information,and they are presented in [KV99℄, where they are usedfor the synthesis of a single pro
ess with in
ompleteinformation.Theorem 4.2 Given an alternating tree automatonA over (� � �)-labeled �-trees, we 
an 
onstru
t analternating tree automaton A0 over �-labeled �-treessu
h that A0 a

epts a labeled tree h��; V i i� A a

eptsxray(h��; V i), and the automata A0 and A have thesame size and index.Theorem 4.3 Let X, Y , and Z be �nite sets. Givenan alternating tree automaton A over Z-labeled (X �Y )-trees, we 
an 
onstru
t an alternating tree automa-ton A0 over Z-labeled X-trees su
h that A0 a

epts aZ-labeled tree hX�; V i i� A a

epts the Z-labeled treewideY (hX�; V i), and the automata A0 and A have thesame size and index.Finally, sin
e we want our algorithm to be appli
a-ble also for settings in whi
h 
ommuni
ation involvesa delay, we need a 
onstru
tion that handles su
h adelay.Theorem 4.4 Given an alternating tree automatonA over �-labeled �-trees, we 
an 
onstru
t an alter-nating tree automaton A0 over �-labeled �-trees su
hthat A0 a

epts a labeled tree h��; V i i� A a

eptsdelay(h��; V i), and the automata A0 and A have thesame size and index.
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Given an alternating tree automaton A, let
over (A), narrowY (A), and wait(A) denote the 
or-responding automata A0 
onstru
ted in Theorems 4.2,4.3 (for a set Y of dire
tions), and 4.4, respe
tively.5 Solving the synthesis problemIn this se
tion we study the synthesis problem forthe ar
hite
tures des
ribed in Se
tion 3. We showthat for all the four 
lasses, the problem is de
id-able, with a nonelementary 
omplexity. Thus, givena CTL? formula  , a 
lass C (one-way 
hain, two-way
hain, one-way ring, or two-way ring), and an integern, the 
omplexity of 
onstru
ting n strategies for npro
esses in an ar
hite
ture of 
lass C that satis�es  is n-exp(j j).3One-way 
hain We assume that 
ommuni
ation in-volves a delay. Thus, the input to Pi+1 at time t isthe output of Pi (or the environment, when i = 0) attime t � 1. A

ordingly, we de�ne the 
omposition fof f1; : : : ; fn as follows. For a string � = z0 � z1 � � � zkand i � 0, let z0 � z1 � � � zk�i be either the pre�x oflength k � i + 1 of �, in 
ase k � i � 0, or �, in 
asek� i+1 � 0. Also, let z0 be the root dire
tion of 2I1 .Then, f : (2I1)� ! 2O[H is de�ned as follows.� f(�) = f1(�) [ � � � [ fn(�).� For � 2 (2I1)� with � = z1 � � � zk, we have f(�) =f1(z0 � z1 � � � zk�1) [ f2(f 01(z0 � z1 � � � zk�2)) [ � � � [fn(f 0n�1(z0 � z1 � � � zk�n)).Consider a CTL? formula  over I [O [H [Henv .Re
all that in a one-way 
hain, we have I[O = I1[O.In order to solve the realizability problem, we build thefollowing tree automata.� A : an alternating Rabin tree automaton thata

epts a (2I1[O[H[Henv )-labeled (2I1[Henv )-treeh(2I1[Henv )�; fi i� it satis�es  [see Theorem 3.1℄.� A0: the alternat-ing Rabin tree automaton wait(A ). Thus, A0a

epts a (2I1[O[H[Henv )-labeled (2I1[Henv )-treeh(2I1[Henv )�; fi i� delay(h(2I1[Henv )�; fi) satis-�es  [see Theorem 4.4℄.� A00: the alternating Ra-bin tree automaton 
over(A0). Thus, A00 a

eptsa (2O[H)-labeled (2I1[Henv )-tree h(2I1[Henv)�; fii� delay(xray(h(2I1[Henv)�; fi)) satis�es  [seeTheorem 4.2℄.3n-exp(k) is a sta
k of n exponents with k on the top; i.e.,1-exp(k) = 2O(k), and (i+ 1)-exp(k) = 2i-exp(k).

� A000 : the alternatingRabin tree automaton narrow (2Henv )(A00). Thus,A000 a

epts a (2O[H)-labeled 2I1-tree h(2I1)�; fii� delay(xray(wide (2Henv )(h(2I1)�; fi))) satis�es [see Theorem 4.3℄.� For 1 � i � n� 1,{ Ai: a nondeterministi
 Rabin tree au-tomaton equivalent to A00i�1 [see Theo-rem 2.1℄. Note that the automatonAi runs on (2Oi[Hi[Oi+1[Hi+1[���[On[Hn)-labeled 2Oi�1 -trees, where we take O0 = I1.{ A0i: the alternating Rabin au-tomaton shape(2Oi[Hi )(Ai). Thus, A0i runson (2Oi+1[Hi+1[���[On[Hn)-labeled (2Oi[Hi)-trees and it a

epts a tree h(2Oi[Hi)�; fii� there is a (2Oi[Hi)-labeled 2Oi�1 -treeh(2Oi�1 )�; f 0i su
h that h(2Oi�1 )�; f + f 0i isa

epted by Ai [see Theorem 4.1℄.{ A00i : the alternating Rabin automatonnarrow (2Hi )(A0i). Thus, A00i a

eptsa (2Oi+1[Hi+1[���[On[Hn)-labeled 2Oi -treeh(2Oi)�; fi i� wide (2Hi )(h(2Oi )�; fi) is a
-
epted by A0i [see Theorem 4.3℄.Intuitively, in ea
h iteration 1 � i � n, we as-sume that the strategies of P1; : : : ; Pi�1 are given(they are en
apsulated in the transition fun
tion ofAi) and the automaton Ai a

epts all the 
omposi-tions of Pi; : : : Pn that together with the given strate-gies satisfy  . Thus, the transition from Ai to Ai+1involves an en
apsulation of the possible strategies ofPi (and how they a�e
t the behavior required fromPi+1; : : : ; Pn in order to satisfy  ) into the transitionfun
tion of Ai.Lemma 5.1  is realizable i� A0n�1 is not empty.The 
onstru
tion of Ai goes via i iterations. Ea
hiteration involves two automata transformations. Onetransformation (narrow ) gets and returns an alternat-ing tree automaton. The other transformation (shape)gets a nondeterministi
 tree automaton and return analternating tree automaton. While all the transforma-tions involve no blow-up in the size of the automata,the fa
t that shape handles nondeterministi
 automatarequires the appli
ation of an additional transforma-tion, namely the translation of an alternating tree au-tomaton to a nondeterministi
 one. This transforma-tion involves an exponential blow-up, leading to anoverall nonelementary blow-up.
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Theorem 5.2 The synthesis problem for CTL? andone-way 
hains is nonelementary de
idable.Proof: It follows from the 
onstru
tions des
ribed inSe
tion 4 that the size of A00n�1 is (n�1)-exp(j j). Thenonemptiness problem for A00n�1 
an then be solved intime n-exp(j j) [MS95, KV98℄. Lemma 5.1 then im-plies that the realizability problem for  
an be solvedin time n-exp(j j). The nonemptiness algorithm 
anbe extended to produ
e a witness for the automatonbeing nonempty (in fa
t, a witness that is a memory-less strategy [Tho95℄). A witness for the nonemptinessof A00n�1 indu
es a strategy fn for Pn. In order to geta strategy for Pn�1, we 
ombine A00n�2 with fn andget an automaton that is guaranteed to be nonemptyand whose witness indu
es a strategy fn�1 for Pn�1.We 
ontinue similarly until strategies for all pro
essesare synthesized.A mat
hing nonelementary lower bound is proved (forLTL formulas) in [PR90℄ (
f. [PR79℄). This lowerbounds applies also to the other ar
hite
ture.With appropriate simple modi�
ations (skippingthe \wait 
onstru
tion" and rede�ning the \shape 
on-stru
tion" to ignore the delay), the method des
ribedabove 
an handle one-way 
hannels in whi
h 
ommu-ni
ation involves no delay (the de�nition of 
omposi-tion then 
oin
ides with the one of [PR90℄). As wedes
ribe below, the method 
an also be extended tohandle the other 
lasses of ar
hite
tures des
ribed inSe
tion 3. The di�eren
es among the ar
hite
tures in-
uen
e the sets of labels and dire
tions of the treesover whi
h the automata are de�ned (for example, ina one-way ring A runs on (2Oenv[On)-trees, and ina two-way ring, it runs on (2Oenv[O2[On)-trees), in-
uen
e the de�nition of 
omposition, and a

ordinglyin
uen
e the de�nition of shapeX (T ) and the \shape
onstru
tion" that handles. For all the ar
hite
tures,however, the idea is similar: a su

essive redu
tion inthe number of pro
esses, where in ea
h step we omita pro
ess and en
apsulate its possible strategies intothe transition fun
tion of intermediate automata.One-way ring. Re
all that in a one-way ring, thepro
ess P1 reads signals from both Pn and the envi-ronment. We suggest two alternative modi�
ations tothe method presented for one-way 
hains. The �rst israther simple: all the intermediate automata we 
on-stru
t maintain (in their alphabet) the input that P1reads from Pn. Then, in the last automaton, whi
h
orresponds to Pn's strategy, we 
lose the ring by re-quiring the output of Pn to agree with the maintainedinput. The se
ond approa
h is 
leaner (and it also has

a 
omputational advantage), yet it requires a moresubstantial modi�
ation. The idea is to start with P1and pro
eed in both dire
tions, en
apsulating two pro-
esses in ea
h iteration. The two dire
tions meet atthe automaton An2 , whose nonemptiness witnesses astrategy for Pn2 that satis�es the tasks inherited to Pn2by both the pro
esses to his left and these to his right.Two-way 
hain. The two-way 
hain ar
hite
ture ismu
h ri
her than that of a one-way 
hain. Sin
e thediÆ
ulties imposed by in
omplete information are or-thogonal and are handled by the narrow 
onstru
tion,we des
ribe here the solution for systems with 
om-plete information, thus Henv [ H = ;. In a two-way
hain, the pro
ess Pi reads both Oi�1 and Oi+1, soits strategy is a fun
tion fi : (2Oi�1[Oi+1)� ! 2Oi .A

ordingly, while in the 
ase of a one-way 
hainthe redu
tion of the pro
ess Pi involves a transitionfrom an automaton that runs on (2Oi[Oi+1[���[On)-labeled 2Oi�1 -trees to an automaton that runs on(2Oi+1[���[On)-labeled 2Oi-trees, here the redu
tion ofPi should involve a transition from an automaton thatruns on (2Oi[Oi+1[���[On)-labeled (2Oi�1[Oi+1)-treesto an automaton that runs on (2Oi+1[���[On)-labeled(2Oi[Oi+2)-trees. In order to see the modi�
ationsthat are therefore needed in the shape 
onstru
tion,let us �rst rede�ne the predi
ate shape and the 
om-position operator it involves.Let Xi�1, Xi, Xi+1, Xi+2, and X be �nite sets,and let z0 and z00 be the root dire
tions of Xi�1 andXi+1 respe
tively. For our appli
ation, Xj standsfor 2Oj , and X stands for 2Oi+3[:::[On . For an(Xi � Xi+1 � Xi+2 � X)-labeled (Xi�1 � Xi+1)-treeh(Xi�1 �Xi+1)�; fi, we say that h(Xi�1 �Xi+1)�; fiis a 
omposition of an Xi-labeled (Xi�1 � Xi+1)-tree h(Xi�1 �Xi+1)�; f1i and an (Xi+1 �Xi+2 �X)-labeled (Xi �Xi+2)-tree h(Xi �Xi+2)�; f2i i� for ev-ery hz1; z01i and hz2; z02i in Xi�1 �Xi+1 and for every� 2 (Xi�1�Xi+1)�, we have (f 0 and f 01 are the mem-oryfull versions of f and f 0):� f(�) = hf1(�); f2(�)i.� f(hz1; z01i) = hf1(hz0; z00i); f2(f 01(�))i.� f(� � hz1; z01i � hz1; z01i) = hf1(hz0; z00i � � �hz1; z01i); f2(f 01(hz0; z00i ��)� f 0(hz0; z00i ��)jXi+2 )i,where � is bitwise 
on
atenation (e.g., y1 �y2�y3 �y4 = hy1; y3i � hy2; y4i) and �jXi+2 is the proje
tionof � on Xi+2.We then say that f = f1 + f1. Intuitively, f de-termines its Xi-element a

ording to f1 and deter-mines the (Xi+1 � Xi+2 � X)-element by applying
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f2 on an interleaving of an appli
ation of f 01, whi
hgives the Xi element and an appli
ation of f 0 on astri
t pre�x of the input, whi
h returns an element inXi�Xi+1�Xi+2�X and is then proje
ted on Xi+2.In addition, sin
e we assume that 
ommuni
ation in-volves a delay, f ignores the last letters in a sequen
eand refers instead to the root dire
tions.For a set T of (Xi � Xi+1 � Xi+2 � X)-labeled(Xi�1 � Xi+1)-trees, the set shapeXi�Xi+2(T ) 
on-sists of all (Xi+1 � Xi+2 � X)-labeled (Xi � Xi+2)-trees h(Xi �Xi+2)�; f2i for whi
h there exists an Xi-labeled (Xi�1 �Xi+1)-tree h(Xi�1 �Xi+1)�; f1i su
hthat h(Xi�1 �Xi+1)�; f1 + f2i is in T .The shape 
onstru
tion in Theorem 4.1 
an be mod-i�ed to handle the de�nition of shape above. Essen-tially, while in the 
urrent 
onstru
tion the automatonA0 guesses in ea
h transition a dire
tion x to pro
eedwith, in the new 
onstru
tion A0 needs to guess twoelements, 
orresponding to both Xi and Xi+2, and itshould remember the Xi+2 element for the proje
tiondes
ribed above.Two-way ring. The solution for two-way rings isbased on the modi�ed shape 
onstru
tion des
ribedfor two-way 
hains and the \two-dire
tion reasoning"des
ribed for one-way rings.The important 
ommon property of the four 
lasseswe handle is the fa
t that there are no two pro
essesboth reading input from the envirponmrnt. Conse-quently, the pro
esses 
an be linearly ordered a

ord-ing to the signals they know. More ar
hite
tures fallin this 
ategory. For example, it is possible to repla
ea single pro
esses in a 
hain by a group of pro
essesthat share the same knowladge, and adjust the synthe-sis algorithms a

ordingly. An exa
t 
hara
terizationof ar
hite
tures for whi
h the synthesis problem is de-
idable is an open problem.6 Dis
ussionOne of the most signi�
ant developments in thearea of system veri�
ation over the last de
ade is thedevelopment of algorithmi
 methods for verifying tem-poral spe
i�
ations of �nite-state systems [CGP99℄.This derives its signi�
an
e both from the fa
t thatmany syn
hronization and 
ommuni
ation proto
ols
an be modeled as �nite-state systems, as well as fromthe great ease of use of fully algorithmi
 methods. Afrequent 
riti
ism against this approa
h, however, isthat veri�
ation is done after signi�
ant resour
es havealready been invested in the development of the pro-gram. Sin
e systems typi
ally 
ontain errors, veri�
a-tion simply be
omes part of the development pro
ess.

The 
riti
s argue that the desired goal is to use thespe
i�
ation in the system development pro
ess in or-der to guarantee the design of 
orre
t systems. Thisis exa
tly what synthesis algorithms do. Despite this
riti
ism, synthesis tools are not as popular in the in-dustry as veri�
ation tools. There are several reasonsfor that: the s
ope of synthesis algorithms has beenquite limited, their 
omplexity is high, and they do notalways produ
e pra
ti
al systems, where pra
ti
alityis measured in a variety of ways, su
h as optimality(say, number of lat
hes required for implementing thesystem in hardware, or number of messages needed tobe passed between the underlying pro
esses), testabil-ity (the ability to test hardware without a

ess to allthe internal variables), and the like.In this paper, we signi�
antly extended the s
opeof synthesis to in
lude many pra
ti
al appli
ations.We 
laim that the high 
omplexity of the problem isnot really a serious obje
tion to the potential useful-ness of synthesis. First, we note that experien
e withveri�
ation shows that nonelementary algorithms 
annevertheless be pra
ti
al, sin
e the worst-
ase 
om-plexity does not arise often. For example, while themodel-
he
king problem for spe
i�
ations in se
ond-order logi
 has nonelementary 
omplexity, the model-
he
king toolMona [EKM98, Kla98℄ su

essfully ver-i�es many spe
i�
ations given in se
ond-order logi
.Se
ond, we argue that synthesis is not harder thanveri�
ation. This may sound as a wishful thinking, asit 
ontradi
ts the known fa
t that while veri�
ation iseasy (linear in the size of the model and at most ex-ponential in the size of the spe
i�
ation), synthesis ishard (nonelementary). There is, however, somethingmisleading in this fa
t: while the 
omplexity of synthe-sis is given in terms of the spe
i�
ation, the 
omplexityof veri�
ation is given with respe
t to both the spe
i-�
ation and the (mu
h bigger) system. In parti
ular,in a distributed setting, it is shown in [Ros92℄ thatthere are LTL spe
i�
ations  n, of length O(n), andar
hite
tures with k pro
esses su
h that the smalleststrategy that realizes  n in the given ar
hite
ture hask-exp(n) states. What is the 
omplexity of verifyingwhether a system satis�es  n? Even if veri�
ation islinear in the size of the system, it would be nonele-mentary in n for 
orre
t systems, just as the synthesisproblem, sin
e su
h systems ne
essarily have at leastk-exp(n) states!In summary, we believe that the real 
hallenge thatsynthesis algorithms and tools fa
e in the 
oming yearsis mostly not that dealing with 
omputational 
om-plexity, but rather that of making automati
ally syn-thesized systems more pra
ti
ally useful.



www.manaraa.com

Referen
es[ALW89℄ M. Abadi, L. Lamport, and P. Wolper. Re-alizable and unrealizable 
on
urrent programspe
i�
ations. In Pro
. 16th ICALP, LNCS372, pp. 1{17, 1989.[CGP99℄ E.M. Clarke, O. Grumberg, and D. Peled.Model Che
king. MIT Press, 1999.[Chu63℄ A. Chur
h. Logi
, arithmeti
s, and automata.In Pro
. International Congress of Mathemati-
ians, 1962, pp. 23{35. institut Mittag-Le�er,1963.[Dij72℄ E.W. Dijksta. Hierar
hi
al ordering of sequen-tial pro
esses, Operating systems te
hniques.A
ademi
 Press, 1972.[Dil89℄ D.L. Dill. Tra
e theory for automati
 hier-ar
hi
al veri�
ation of speed independent 
ir-
uits. MIT Press, 1989.[DTV99℄ M. Daniele, P. Traverso, and M.Y. Vardi.Strong 
y
li
 planning revisited. In S. Biundoand M. Fox, editors, 5th European Conferen
eon Planning, pp. 34{46, 1999.[EC82℄ E.A. Emerson and E.M. Clarke. Using bran
h-ing time logi
 to synthesize syn
hronizationskeletons. S
ien
e of Computer Programming,2:241{266, 1982.[EH86℄ E.A. Emerson and J.Y. Halpern. Sometimesand not never revisited: On bran
hing versuslinear time. Journal of the ACM, 33(1):151{178, 1986.[EJ88℄ E.A. Emerson and C. Jutla. The 
omplexityof tree automata and logi
s of programs. InPro
. 29th FOCS, pp. 328{337, 1988.[EKM98℄ J. Elgaard, N. Klarlund, and A. M�oller. Mona1.x: new te
hniques for WS1S and WS2S.In Pro
 10th CAV, LNCS 1427, pp. 516{520,1998.[Eme90℄ E.A. Emerson. Temporal and modal logi
.Handbook of Theoreti
al Computer S
ien
e,pp. 997{1072, 1990.[Kla98℄ N. Klarlund. Mona & Fido: The logi
-automaton 
onne
tion in pra
ti
e. In Pro
CSL '97, LNCS, 1997.[KMTV00℄ O. Kupferman, P. Madhusudan, P.S. Thia-garajan, and M.Y. Vardi. Open systems inrea
tive environments: Control and synthesis.In Pro
. 11th CONCUR, LNCS 1877, pp. 92{107, 2000.[KV98℄ O. Kupferman and M.Y. Vardi. Weak alter-nating automata and tree automata empti-ness. In Pro
. 30th STOC, pp. 224{233, 1998.[KV99℄ O. Kupferman and M.Y. Vardi. Chur
h'sproblem revisited. The Bulletin of Symboli
Logi
, 5(2):245 { 263, June 1999.

[KVW00℄ O. Kupferman, M.Y. Vardi, and P. Wolper. Anautomata-theoreti
 approa
h to bran
hing-time model 
he
king. Journal of the ACM,47(2):312{360, Mar
h 2000.[Man99℄ Mi
rosoft LAN Manager. The proto
ol sta
k.http://www.rit.edu/�trb5541/p2 sta
k.html,1999.[MS87℄ D.E. Muller and P.E. S
hupp. Alternating au-tomata on in�nite trees. Theoreti
al ComputerS
ien
e, 54:267{276, 1987.[MS95℄ D.E. Muller and P.E. S
hupp. Simulating al-ternating tree automata by nondeterministi
automata: New results and new proofs of the-orems of Rabin, M
Naughton and Safra. The-oreti
al Computer S
ien
e, 141:69{107, 1995.[MW80℄ Z. Manna and R. Waldinger. A dedu
tive ap-proa
h to program synthesis. ACM TOPLAS,2(1):90{121, 1980.[MW84℄ Z. Manna and P. Wolper. Synthesis of 
ommu-ni
ating pro
esses from temporal logi
 spe
i�-
ations. ACM TOPLAS, 6(1):68{93, January1984.[PR79℄ G.L. Peterson and J.H. Reif. Multiple-personalternation. In Pro
. 20st IEEE Symp. onFoundation of Computer S
ien
e, pp. 348{363,1979.[PR89a℄ A. Pnueli and R. Rosner. On the synthesis ofa rea
tive module. In Pro
. 16th POPL, pp.179{190, 1989.[PR89b℄ A. Pnueli and R. Rosner. On the synthesisof an asyn
hronous rea
tive module. In Pro
.16th ICALP, LNCS 372, pp. 652{671, 1989.[PR90℄ A. Pnueli and R. Rosner. Distributed rea
tivesystems are hard to synthesize. In Pro
. 31stFOCS, pp. 746{757, 1990.[PTVF92℄ W.H. Press, S.A. Teukolsky, W.T. Vetterling,and B.P. Flannery. Numeri
al re
ipes in C.Cambridge University Press, 1992.[Ros92℄ R. Rosner. Modular Synthesis of Rea
tive Sys-tems. PhD thesis, Weizmann Institute of S
i-en
e, Rehovot, Israel, 1992.[RW89℄ P.J.G. Ramadge and W.M. Wonham. The
ontrol of dis
rete event systems. IEEE Trans-a
tions on Control Theory, 77:81{98, 1989.[Tan87℄ A.S. Tanenboum. Operating systems, designand implementation. Prenti
e-Hall Interna-tional Editors, New Jersy, 1987.[Tho95℄ W. Thomas. On the synthesis of strategies inin�nite games. In E.W. Mayr and C. Pue
h,editors, Pro
. 12th TACAS, LNCS 900, pp. 1{13, 1995.[Var95℄ M.Y. Vardi. An automata-theoreti
 approa
hto fair realizability and synthesis. Pro
 7thCAV, LNCS 939, pp. 267{292, 1995.


