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Synthesizing Distributed SystemsOrna KupfermanHebrew University� Moshe Y. VardiRie UniversityyAbstratIn system synthesis, we transform a spei�ationinto a system that is guaranteed to satisfy the spei�-ation. When the system is distributed, the goal is toonstrut the system's underlying proesses. Resultson multi-player games imply that the synthesis prob-lem for linear spei�ations is undeidable for generalarhitetures, and is nonelementary deidable for hi-erarhial arhitetures, where the proesses are lin-early ordered and information among them ows inone diretion. In this paper we present a signi�antextension of this result. We handle both linear andbranhing spei�ations, and we show that a suÆientondition for deidability of the synthesis problem isa linear or yli order among the proesses, in whihinformation ows in either one or both diretions. Wealso allow the proesses to have internal hidden vari-ables, and we onsider ommuniations with and with-out delay. Many pratial appliations fall into thislass.1 IntrodutionIn system synthesis, we transform a spei�ationinto a system that is guaranteed to satisfy the spei-�ation. Early work on synthesis onsider losed sys-tems. There, a system that meets the spei�ationan be extrated from a onstrutive proof that thespei�ation is satis�able [MW80, EC82℄. As arguedin [ALW89, Dil89, PR89a℄, suh synthesis paradigmsare not of muh interest when applied to open sys-tems, whih interat with an environment. While syn-thesis that is based on satis�ability assumes no envi-ronment or a ooperative one, synthesis of open sys-tems should assume a hostile environment, and shouldgenerate a system that satis�es the spei�ation no�Work partially supported by BSF grant 9800096. Address:Shool of Computer Siene and Engineering, Jerusalem 91904,Israel. Email: orna�s.huji.a.ilyWork partially supported by NSF grants CCR-9700061 andCCR-9988322, BSF grant 9800096, and a grant from the In-tel Corporation. Address: Department of Computer Siene,Houston, TX 77251-1892, U.S.A. Email: vardi�s.rie.edu

matter how the environment behaves. The work in[ALW89, PR89a℄ formulated the synthesis problem interms of a game between the system and the envi-ronment, and is losely related to Churh's solvabilityproblem [Chu63℄. Given sets I and O of input andoutput signals, respetively, we an view a system asa strategy P : (2I)� ! 2O that maps a �nite sequeneof sets of input signals (the behavior of the environ-ment so far) into a set of output signals (the reationof the system to this behavior).When P interats with an environment that gener-ates in�nite input sequenes, it assoiates with eahinput sequene an in�nite omputation over 2I[O.We say that a spei�ation  is realizable i� thereis a strategy all of whose omputations satisfy  ,in ase  is a linear spei�ation, or a strategywhose indued omputation tree satis�es  , in ase is a branhing spei�ation. Synthesis of  thenamounts to onstruting suh a strategy. Solutionsfor the realizability and synthesis problems for spe-i�ations in the linear temporal logi LTL are pre-sented in [ALW89, PR89a℄. The solutions are ex-tended in [PR89b, Var95℄ to asynhronous systemsand in [KV99℄ to systems with inomplete informa-tion and spei�ations in the branhing temporal logiCTL?. Methods developed for synthesis of open sys-tems are appliable also for supervisory ontrol, whereinstead of hostile environments we onsider ollabora-tive ontrollers of nondeterministi systems [RW89℄.While the transition to open systems has signi�-antly broaden the sope of synthesis to real-life de-signs, it is still limited to settings in whih the opensystem onsists of a single proess. In a more real-isti setting, that of a distributed system, the inputto the synthesis problem onsists of both the spe-i�ation and an arhiteture, whih may onsist ofmore than one proess and desribes the ommuni-ation hannels between the di�erent proesses. Moreformally, we assume a setting with n proesses, withproess i referring to sets Ii, Oi, and Hi, of input,output, and hidden (internal) signals (input signalsmay be external ; i.e., generated by the environment),and we want to onstrut for eah proess a strat-
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egy Pi : (2Ii)� ! 2Oi[Hi so that the omposition ofthe strategies satis�es the spei�ation. The arhite-ture is given by a set of onditions like O2 [ O4 � I3(\the only hannels to P3 are from P2 to P4"). Theexat de�nition of the omposition of the strategiesthen depends on assumptions on the ommuniation(e.g., whether ommuniation involves a delay). If, forexample, we want to synthesize �ve dining philoso-phers [Dij72℄, we an speify in temporal logi themutual exlusion and non-starvation requirements forthe philosophers, speify a two-way ring with �ve pro-esses, and ask the synthesis proedure to onstrutappropriate strategies for the proesses. Clearly, a so-lution for the dining philosophers that refers to a singleproess is not of muh interest.There are two possible ways to approah the syn-thesis problem for distributed systems. One approahis to use a synthesis proedure for a single proess, andthen deompose the proess aording to the given ar-hiteture [EC82, MW84℄. While this approah hasa omputational advantage, known deomposition al-gorithms are not omplete in the sense that a spei-�ation may be realizable with respet to a given ar-hiteture yet the deomposition algorithm would fail[PR90℄. Thus, one an view deomposition as a heuris-ti for the synthesis problem, whih is not guaranteedto work. The seond approah is to refer to the arhi-teture of the distributed system from the outset andonstrut the underlying proesses diretly [PR90℄.Results on multi-player games imply that the real-izability problem for general distributed systems is un-deidable [PR79, PR90℄ (the results in [PR79℄ refer tomultiple-person alternating Turing mahines and areextended in [PR90℄ to the synthesis setting). Essen-tially, there is an arhiteture 
 (in fat, a very simplearhiteture, onsisting of two independent proessesP1 and P2 that interat with the same environment;that is I1 \ (O2 [ H2) = ; and I2 \ (O1 [ H1) = ;)suh that for every deterministi Turing mahine M ,there is an LTL formula  M suh that M halts onthe empty tape i�  M is realizable in 
. The redu-tion is heavily based on P1 and P2 being independent,and it fails, for example, if we assume that P2 getsits input from P1 (i.e., O1 � I2). Indeed, it is shownin [PR79, PR90℄ that one we onsider hierarhial ar-hitetures, in whih the proesses are linearly orderedand information ows in one diretion, the realizabilityproblem is nonelementary deidable for spei�ationsin LTL.The deidability result in [PR90℄ su�ers from twolimitations. First, when we synthesize a system froman LTL spei�ation  , we require  to hold in all the

omputations of the system. Consequently, we an-not impose possibility requirements on the system (f.[DTV99℄). In the dining-philosophers example, whilewe an speify in LTL mutual exlusion, we annotspeify deadlok freedom (every �nite interation anbe extended so that a philosopher eventually eats). Inorder to express possibility properties, we should spe-ify the system using branhing temporal logi, whihenables both universal and existential path quanti�-ation [EH86, Eme90℄. Seond, and more ruially,the algorithm in [PR90℄ is not appliable for arhite-tures that are not hierarhial, and real-life designsare rarely based on hierarhial arhitetures. We donot ount the nonelementary omplexity as a limita-tion, as it is aompanied by a mathing lower boundand, as we disuss further in Setion 6, the worst-aseomplexity rarely appears in pratie.In this paper we remove both limitations. We on-sider spei�ations in the branhing temporal logiCTL? (whih subsumes LTL), and we handle all arhi-tetures in whih there is a linear or yli order amongthe proesses, in whih information ows in either oneor both diretions. Thus, our arhitetures an be ei-ther hains or rings with both one-way and two-wayommuniation hannels. In addition, we allow theproesses to have internal hidden variables, and weonsider ommuniations with and without delay. Weshow that the realizability problem stays deidable inall these ases. The solution we present is based onalternating tree automata, whih separate the logialand algorithmi aspets of the problem: given a spe-i�ation  and an arhiteture 
, we onstrut an au-tomaton A
; suh that  is realizable in 
 i� A
; isnot empty. To hek realizability, the automaton hasto be tested for nonemptiness [EJ88, PR89a, KV98℄.The nonemptiness algorithm also synthesizes the pro-esses in 
 that together realize  .We argue that the results in the paper signi�antlyextend the sope of synthesis for distributed systems,as ommonly used arhiteture belong to the lass ofarhitetures we handle [Tan87℄. Examples of applia-tions of these arhitetures inlude various ommuni-ation protools in whih ommuniation proeeds inlayers. For example, the so-alled OSI model onsistsof a seven-layer protool stak (Appliation, Presen-tation, Session, Transport, Network, Data link, andPhysial layers), where every layer ommuniates withthe layer above it and the layer below it. The envi-ronment talks to the top layer and the bottom layer[Man99℄. Arhitetures with two-way ommuniationhannels are ommon in sienti� omputations, saywhen we iterate in order to solve a di�erential equa-
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tion and eah proess works on part of the omputeddomain. Then, it is useful to divide the domain tolayers so that in eah iteration every layer updates itsneighbors with its results from the previous iteration[PTVF92℄.2 Preliminaries2.1 Trees and labeled treesGiven a �nite set �, an �-tree is a set T � �� suhthat if x � � 2 T , where x 2 �� and � 2 �, then alsox 2 T . When � is not important or lear from theontext, we all T a tree. When T = ��, we say thatT is full. The elements of T are alled nodes, and theempty word � is the root of T . For every x 2 T , thenodes x � � 2 T where � 2 � are the hildren of x.Eah node x of T has a diretion, dir(x) in �. Thediretion of � is �0, for some designated �0 2 �, alledthe root diretion. The diretion of a node x � � is �.Given two �nite sets � and �, a �-labeled �-tree isa pair hT; V i where T is an �-tree and V : T ! �maps eah node of T to a letter in �. When �and � are not important or lear from the ontext,we all hT; V i a labeled tree. For a �-labeled �-tree h��; V i, we de�ne the memoryfull version ofh��; V i, denoted mem(h��; V i) as the �+-labeled �-tree h��; V 0i where V 0(�) = V (�), for � 2 � we haveV 0(�) = V (�) � V (�), and for all x 2 �+ and � 2 �we have V 0(x � �) = V 0(x) � V (�). Thus, the label ofa node x in mem(h��; V i) is the word obtained byonatenating the labels of all the pre�xes (inluding�) of x in h��; V i.For a �-labeled �-tree h��; V i, we de�ne the x-rayof h��; V i, denoted xray(h��; V i), as the (� � �)-labeled �-tree h��; V 0i in whih eah node is labeledby both its diretion and its labeling in h��; V i. Thus,for every x 2 ��, we have V 0(x) = hdir(x); V (x)i. Es-sentially, the labels in xray(h��; V i) ontain informa-tion not only about the surfae of h��; V i (its labels)but also about its skeleton (its nodes).For a �-labeled �-tree h��; V i, we de�ne the delayof h��; V i, denoted delay(h��; V i), as the �-labeled�-tree h��; V 0i in whih V 0(�) = V (�) and for all x 2�� and � 2 �, we have V 0(x � �) = V (�0 � x), where�0 = dir(�) is the root diretion of �. Intuitively, thedelay of h��; V i desribes the label node x would havewhen the sequene of diretions leading to x arriveswith a delay, thus the last diretion in x is missingand x is pre�xed by the root diretion.Consider a set X � Y of diretions. For a node� 2 (X�Y )�, let hideY (�) be the node in X� obtainedfrom � by replaing eah letter hx; yi by the letter

x. For example, the node h0; 0i � h1; 0i of the 4-ary(f0; 1g� f0; 1g)-tree orresponds, by hidef0;1g, to thenode 0 �1 of the f0; 1g-tree. Note that the nodes h0; 0i�h1; 1i; h0; 1i � h1; 0i, and h0; 1i � h1; 1i of the 4-ary treealso orrespond, by hidef0;1g, to the node 0 � 1 of thebinary tree. For a Z-labeledX-tree hX�; V i, we de�nethe Y -widening of hX�; V i, denoted wideY (hX�; V i),as the Z-labeled (X�Y )-tree h(X�Y )�; V 0i where forevery � 2 (X�Y )�, we have V 0(�) = V (hideY (�)). Aswe explain further in Setion 3, nodes �1 and �2 withhideY (�1) = hideY (�2) = � are indistinguishable inwideY (hX�; V i) by someone that does not observe Y .Indeed, for suh an observer, both nodes are reahedby traversing � and are labeled by V (�).2.2 Alternating automataAlternating tree automata generalize nondeterministitree automata and were �rst introdued in [MS87℄. Analternating tree automaton A = h�; Q; q0; Æ; �i runson full �-labeled �-trees (for an agreed set � of dire-tions). It onsists of a �nite set Q of states, an initialstate q0 2 Q, a transition funtion Æ, and an aep-tane ondition � (a ondition that de�nes a subset ofQ!). For a set � of diretions, let B+(��Q) be the setof positive Boolean formulas over ��Q; i.e., Booleanformulas built from elements in � � Q using ^ and_, where we also allow the formulas true and falseand, as usual, ^ has preedene over _. The transi-tion funtion Æ : Q � � ! B+(� � Q) maps a stateand an input letter to a formula that suggests a newon�guration for the automaton. For example, when� = f0; 1g, having Æ(q; �) = (0; q1) ^ (0; q2) _ (0; q2) ^(1; q2) ^ (1; q3) means that when the automaton is instate q and reads the letter �, it an either send twoopies, in states q1 and q2, to diretion 0 of the tree, orsend a opy in state q2 to diretion 0 and two opies,in states q2 and q3, to diretion 1. Thus, unlike nonde-terministi tree automata, here the transition funtionmay require the automaton to send several opies tothe same diretion or allow it not to send opies to alldiretions.A run of an alternating automaton A on an in-put �-labeled �-tree hT; V i is a tree hTr; ri in whihthe nodes are labeled by elements of �� � Q. Eahnode of Tr orresponds to a node of T . A node inTr, labeled by (x; q), desribes a opy of the automa-ton that reads the node x of T and visits the stateq. Note that many nodes of Tr an orrespond tothe same node of T ; in ontrast, in a run of a non-deterministi automaton on hT; V i there is a one-to-one orrespondene between the nodes of the run andthe nodes of the tree. The labels of a node and its
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hildren have to satisfy the transition funtion. Forexample, if hT; V i is a f0; 1g-tree with V (�) = a andÆ(q0; a) = ((0; q1)_ (0; q2))^ ((0; q3)_ (1; q2)), then thenodes of hTr; ri at level 1 inlude the label (0; q1) or(0; q2), and inlude the label (0; q3) or (1; q2). Eah in-�nite path � in hTr; ri is labeled by a word r(�) in Q!.Let inf (�) denote the set of states in Q that appearin r(�) in�nitely often. A run hTr; ri is aepting i�all its in�nite paths satisfy the aeptane ondition.In Rabin alternating tree automata, � � 2Q � 2Q,and an in�nite path � satis�es an aeptane ondition� = fhG1; B1i; : : : ; hGk ; Bkig i� there exists 1 � i � kfor whih inf (�) \ Gi 6= ; and inf (�) \ Bi = ;. Werefer to the number of pairs in � as the index of A. Anautomaton aepts a tree i� there exists an aeptingrun on it. We denote by L(A) the language of theautomaton A; i.e., the set of all labeled trees that Aaepts. We say that an automaton is nonempty i�L(A) 6= ;. For an aeptane ondition � over Q anda set S, we denote by �� S the aeptane onditionover Q � S obtained from � by replaing eah set Fpartiipating in � by the set F � S. For example, if� is the Rabin aeptane ondition fhG;Big, then�� S = fhG� S;B � Sig.Nondeterministi tree automata an be viewed as aspeial ase of alternating tree automata, where theformulas in B+(� � Q) are suh that if a formulais rewritten in disjuntive normal form, then for ev-ery diretion � 2 �, there is exatly one element off�g�Q in eah disjunt. While nondeterministi treeautomata are not less expressive than alternating treeautomata, they are exponentially less suint:Theorem 2.1 [MS95℄ An alternating Rabin tree au-tomaton with m states and k pairs an be translated toan equivalent nondeterministi Rabin tree automatonwith mO(mk) states and O(mk) pairs.3 Arhitetures and the synthesisproblemGiven sets I and O of input and output signals,respetively, we an view a proess P as a strategyf : (2I)� ! 2O that maps a �nite sequene of setsof input signals into a set of output signals. We of-ten refer to the strategy f as the 2O-labeled 2I -treeh(2I)�; fi. Let i0 be the root diretion of 2I . WhenP interats with an environment that generates in-�nite input sequenes, it assoiates with eah in�-nite input sequene i1; i2; : : :, an in�nite omputationfi0g[ f("); fi1g[ f(i1); fi2g[ f(i1 � i2); : : : over 2I[O.The interation of P with all possible input sequenesindues the (2I[O)-labeled 2I-tree xray(h(2I )�; fi).

The environment may have hidden internal signals,whih are not readable by P . Let H denote the set ofhidden signals. Then, a strategy for P is still a fun-tion f : (2I)� ! 2O, but the interation of P with anoutome of the environment indues an in�nite om-putation over 2I[O[H , and its interation with all pos-sible outomes indues the (2I[O[H)-labeled (2I[H)-tree xray(wide (2H)(h(2I )�; fi)). Eah node in this treehas 2jI[Hj hildren1, orresponding to the 2jI[Hj pos-sible assignments to I [H . Note that sine P annotsee the signals in H , and thus annot distinguish be-tween hildren that agree on their assignment to sig-nals in I , the tree above is the 2H-widening of theinteration between P and its environment as seen byP . In a setting with n proesses P1; : : : ; Pn, where pro-ess Pi reads Ii, writes Oi, and has hidden internalsignals Hi, a strategy for Pi is a funtion fi : (2Ii)� !2Oi[Hi . We denoteS1�i�n Ii by I , and similarly for Oand H . The n proesses P1; : : : ; Pn interat with eahother and may also interat with an environment. Wedenote by Oenv the output signals of the environment(that is, the external input to the n proesses), and de-note by Henv the hidden signals of the environment.Di�erent arhitetures indue di�erent ommunia-tion hannels between the proesses. We onsider herefour lasses of arhitetures (see �gure next page). Inall lasses, eah signal an be written by a single pro-ess (that is, Oi \ Oj = ; for all i 6= j), but an beread by several proesses (that is, possibly Ii\Ij 6= ;).� In a one-way hain, P1 reads from the environ-ment, Pn writes to the environment, and all theother proesses read from the proess to theirleft, and write to the proess to their right. For-mally, I1 = Oenv , and for all 2 � i � n we haveIi = Oi�1. Note that Pi annot read the in-ternal signals of the proess to its left and thatI [ O = I [ On = I1 [ O.� A one-way ring extends a one-way hain by aommuniation hannel from Pn to P1. Thus, P1reads from both Pn and the environment (i.e.,I1 = On [ Oenv), and Pn writes to both P1 andthe environment.� In a two-way hain, P1 reads from both P2 andthe environment and writes to P2, Pn reads fromPn�1 and writes to both Pn�1 and the environ-ment, and all the other proesses read from the1We onsider synthesis with respet to maximal environ-ments, whih provide all possible input sequenes. An extensionto non-maximal environment is possible, using the same teh-niques as in [KMTV00℄.
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proesses to their left and right, and write tothe proesses to their left and right. Formally,I1 = Oenv [ O2, for all 2 � i � n � 1 we haveIi = Oi�1 [ Oi+1, and In = On�1.� A two-way ring extends a two-way hain bya ommuniation hannel between Pn and P1.Thus, P1 reads from P2, Pn, and the environment(i.e., I1 = Oenv [O2[On), and writes to both P2and Pn, and Pn reads from both P1 and Pn�1 andwrites to both P1, Pn�1, and the environment.Note that in all the four lasses, and for all i andj with i < j, the proess Pi has omplete informa-tion about the input to Pj , thus Pi an simulate Pjand have omplete information also about its output2.This means, for example, that in a two-way hain,we ould give up the hannel from P2 to P1, lettingP1 ompute the information along this hannel, andsimilarly for the other right-to-left hannels. Whilethis would not hange the answer to the realizabilityquestion, it may signi�antly inrease the sizes of thesynthesized proesses.
Two-way ring
p2p2pn: : : pn: : :p1 p2p1 p2One-way hainOne-way ring

p3 : : : pn: : :p1 p3 : : : pn: : :p1 Two-way hain
For all the arhitetures, we de�ne the ompositionof strategies f1; : : : ; fn as a funtion f : (2Oenv )� !2O[H that desribes the joint behavior of the proesseson an in�nite sequene of external input signals. Theexat de�nition of a omposition depends on the par-tiular arhiteture as well as on assumptions on theommuniation (e.g., whether ommuniation involvesa delay). We de�ne several ompositions in Setion 5.In [PR90℄, Pnueli and Rosner study one-way hannels(alled \hierarhial arhitetures" there) where om-muniation involves no delay. In this setting, om-positions are de�ned as follows. For the strategyh(2Ii)�; fii, let h(2Ii)�; f 0ii = mem(h(2Ii)�; fii). Re-all that in a one-way hain, Oenv = I1. Then, f :(2Oenv )� ! 2O[H is suh that for every � 2 (2Oenv )�,2Indeed Pj , for j > i, generates also hidden signals, but thesesignals are generated by a strategy that is known to Pi, sine ourframework assumes that the proesses are ollaborative, whilethe environment is adversarial.

we havef(�) = f1(�) [ f2(f 01(�)) [ f3(f 02(f 01(�)))[: : : [ fn(f 0n�1(� � � (f 02(f 01(�))) � � �)):Intuitively, for all i, the output of Pi (and, onse-quently, the ontribution of fi to f), depends on thehistory of the outputs of Pi�1, namely the memory-full version of fi�1, whih by itself depends on thememoryfull version of fi�2, and so on.The ompo-sition f indues the omputation tree of P1; : : : ; Pn,whih is the (2I[O[H[Henv )-labeled (2Oenv[Henv)-treexray(wide (2Henv )(h(2Oenv )�; fi)). The transition fromthe omposition to the omputation tree involves twotransformations. First, while the omposition f or-responds to the omposition as seen by the proesses,and thus ignores the signals in Henv and the nonde-terminism indued by them, the omputation tree or-responds to the omposition as seen by someone thatsees all signals, whih involves a 2Henv -widening. Inaddition, as the signals in Oenv and Henv are repre-sented in the widening of the omposition only in itsnodes and not in its labels, we employ xray and obtaina tree whose labels refer to all signals.Given a CTL? formula  over I [ O [ H [ Henv ,and an arhiteture 
 with proesses P1; : : : ; Pn, wesay that  is realizable in 
 i� there are strategiesfor P1; : : : ; Pn whose omposition indues a ompu-tation tree that satis�es  . The synthesis problem isthen to onstrut these strategies. The synthesis prob-lem for one-way hains with omplete information isintrodued and solved in [PR90℄ for spei�ations inthe linear temporal logi LTL (whih is a strit sub-set of CTL?). The synthesis problem for CTL? foran arhiteture with a single proess with inompleteinformation is introdued and solved in [KV99℄. Inthis paper, we solve the synthesis problem for CTL?for the four lasses of arhitetures introdued above.Our solution is based on automata on in�nite trees.For our purposes, the ruial feature of CTL? is thefollowing translation of CTL? formulas to alternatingRabin tree automata.Theorem 3.1 [KVW00℄ Given a CTL? formula  over a set AP of atomi propositions and a set � ofdiretions, there exists an alternating Rabin tree au-tomaton A�; over 2AP -labeled �-trees, with 2O(j j)states and two pairs, suh that L(A�; ) is exatly theset of trees satisfying  .4 Useful automata onstrutionsLetX , Y , and Z be �nite sets, and let z0 be the rootdiretion of Z. For an (X�Y )-labeled Z-tree hZ�; fi,
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we say that hZ�; fi is a omposition of anX-labeled Z-tree hZ�; fXi, where mem(hZ�; fXi) = hZ�; f 0Xi, anda Y -labeled X-tree hX�; fY i i� for every z1 and z2 inZ and for every � 2 Z�, we have� f(�) = fX(�) [ fY (�).� f(z1) = fX(z0) [ fY (f 0X(�)).� f(� � z1 � z2) = fX(z0 � � � z1) [ fY (f 0X(z0 � �)).We then say that f = fX+fY . For a set T of (X�Y )-labeled Z-trees, the set shapeX(T ) onsists of all Y -labeled X-trees hX�; fY i for whih there exists an X-labeled Z-tree hZ�; fXi suh that the (X�Y )-labeledZ-tree hZ�; fX + fY i is in T .Theorem 4.1 Let X, Y , and Z be �nite sets. Givena nondeterministi tree automaton A over (X �Y )-labeled Z-trees, we an onstrut an alternatingtree automaton A0 over Y -labeled X-trees suh thatL(A0) = shapeX (L(A)) and the automata A0 and Ahave the same size and index.Proof: Let A = hX � Y;Q; q0; Æ; �i. Then, A0 =hY;Q; q0; Æ0; �i, where for every q 2 Q and y 2 Y , wehaveÆ0(q; y) = _x2X;hs1;s2;:::;sjZji2Æ(q;hx;yi)(x; s1) ^ (x; s2) ^ : : : ^ (x; sjZj):Consider �rst the ase where q = q0 and A0 reads theroot of the input tree hX�; fY i. The letter y read atthe root is fY (�). Sine in fX + fY the root is labeledhfX(�); fY (�)i, we proeed aording to Æ(q0; hx; yi) forsome x whih is our guess for fX(�). By the de�nitionof Æ0, eah opy of A that is sent to diretion z 2 Zand visits state s indues a opy of A0 that is sent todiretion x and visits the state s. Sine the hoie ofx is joint to all z 2 Z, all the opies of A0 induedas above are going to read the same letter, whih isour guess for fY (fX (�)). Consider now a opy of Athat reads a node z 2 Z and visits state s. Reallthat the automaton A0 then has a opy that readsthe node fX(�), visits the state s, and the letter yread by this opy (and all the other opies that readthe node fX(�)) is our guess for fY (fX(�)). Sine infX + fY the node z is labeled hfX(z0); fY (fX(�))i, weproeed aording to Æ(s; hx; yi), for some x whih isour guess for fX(z0). Eah opy of A that is sentto diretion z0 2 Z and visits state s0 then indues aopy of A0 that is sent to diretion x and visits thestate s0. All these opies are going to read the sameletter, whih is our guess for fY (f 0X(z0)). The same

idea repeats in further levels: a opy of A that readsa node � � z1 � z2 2 Z� and visits state s is assoiatedwith a opy of A0 that reads the node f 0X(z0 � �) andvisits the state s. The letter y read by this opy (andall the other opies that read the node f 0X(z0 � �)) isour guess for fY (f 0X(z0 � �)). Sine in fX + fY thenode � �z1 �z2 is labeled hfX (z0 �� �z1); fY (f 0X(z0 ��))i,we proeed aording to Æ(s; hx; yi) for some x whihis our guess for fX(z0 � � � z1). All the opies sent todiretion x are going to read the same letter, whih isour guess for fY (f 0X(z0 � � � z1)).Given a nondeterministi tree automaton A, letshapeX(A) denote the orresponding automaton A0onstruted in Theorem 4.1. Note that whileshapeX(A) returns an alternating tree automaton, itis de�ned for a nondeterministi tree automaton A.Thus, suessive appliations of shape require an in-termediate appliation of the exponential alternation-removal proedure in Theorem 2.1.The onstrution desribed in Theorem 4.1 will helpus to solve the realizability problem by suessivelyreduing the number of proesses in the arhitetures.The two onstrutions below will handle the externalinput to the system and the inomplete information,and they are presented in [KV99℄, where they are usedfor the synthesis of a single proess with inompleteinformation.Theorem 4.2 Given an alternating tree automatonA over (� � �)-labeled �-trees, we an onstrut analternating tree automaton A0 over �-labeled �-treessuh that A0 aepts a labeled tree h��; V i i� A aeptsxray(h��; V i), and the automata A0 and A have thesame size and index.Theorem 4.3 Let X, Y , and Z be �nite sets. Givenan alternating tree automaton A over Z-labeled (X �Y )-trees, we an onstrut an alternating tree automa-ton A0 over Z-labeled X-trees suh that A0 aepts aZ-labeled tree hX�; V i i� A aepts the Z-labeled treewideY (hX�; V i), and the automata A0 and A have thesame size and index.Finally, sine we want our algorithm to be applia-ble also for settings in whih ommuniation involvesa delay, we need a onstrution that handles suh adelay.Theorem 4.4 Given an alternating tree automatonA over �-labeled �-trees, we an onstrut an alter-nating tree automaton A0 over �-labeled �-trees suhthat A0 aepts a labeled tree h��; V i i� A aeptsdelay(h��; V i), and the automata A0 and A have thesame size and index.
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Given an alternating tree automaton A, letover (A), narrowY (A), and wait(A) denote the or-responding automata A0 onstruted in Theorems 4.2,4.3 (for a set Y of diretions), and 4.4, respetively.5 Solving the synthesis problemIn this setion we study the synthesis problem forthe arhitetures desribed in Setion 3. We showthat for all the four lasses, the problem is deid-able, with a nonelementary omplexity. Thus, givena CTL? formula  , a lass C (one-way hain, two-wayhain, one-way ring, or two-way ring), and an integern, the omplexity of onstruting n strategies for nproesses in an arhiteture of lass C that satis�es  is n-exp(j j).3One-way hain We assume that ommuniation in-volves a delay. Thus, the input to Pi+1 at time t isthe output of Pi (or the environment, when i = 0) attime t � 1. Aordingly, we de�ne the omposition fof f1; : : : ; fn as follows. For a string � = z0 � z1 � � � zkand i � 0, let z0 � z1 � � � zk�i be either the pre�x oflength k � i + 1 of �, in ase k � i � 0, or �, in asek� i+1 � 0. Also, let z0 be the root diretion of 2I1 .Then, f : (2I1)� ! 2O[H is de�ned as follows.� f(�) = f1(�) [ � � � [ fn(�).� For � 2 (2I1)� with � = z1 � � � zk, we have f(�) =f1(z0 � z1 � � � zk�1) [ f2(f 01(z0 � z1 � � � zk�2)) [ � � � [fn(f 0n�1(z0 � z1 � � � zk�n)).Consider a CTL? formula  over I [O [H [Henv .Reall that in a one-way hain, we have I[O = I1[O.In order to solve the realizability problem, we build thefollowing tree automata.� A : an alternating Rabin tree automaton thataepts a (2I1[O[H[Henv )-labeled (2I1[Henv )-treeh(2I1[Henv )�; fi i� it satis�es  [see Theorem 3.1℄.� A0: the alternat-ing Rabin tree automaton wait(A ). Thus, A0aepts a (2I1[O[H[Henv )-labeled (2I1[Henv )-treeh(2I1[Henv )�; fi i� delay(h(2I1[Henv )�; fi) satis-�es  [see Theorem 4.4℄.� A00: the alternating Ra-bin tree automaton over(A0). Thus, A00 aeptsa (2O[H)-labeled (2I1[Henv )-tree h(2I1[Henv)�; fii� delay(xray(h(2I1[Henv)�; fi)) satis�es  [seeTheorem 4.2℄.3n-exp(k) is a stak of n exponents with k on the top; i.e.,1-exp(k) = 2O(k), and (i+ 1)-exp(k) = 2i-exp(k).

� A000 : the alternatingRabin tree automaton narrow (2Henv )(A00). Thus,A000 aepts a (2O[H)-labeled 2I1-tree h(2I1)�; fii� delay(xray(wide (2Henv )(h(2I1)�; fi))) satis�es [see Theorem 4.3℄.� For 1 � i � n� 1,{ Ai: a nondeterministi Rabin tree au-tomaton equivalent to A00i�1 [see Theo-rem 2.1℄. Note that the automatonAi runs on (2Oi[Hi[Oi+1[Hi+1[���[On[Hn)-labeled 2Oi�1 -trees, where we take O0 = I1.{ A0i: the alternating Rabin au-tomaton shape(2Oi[Hi )(Ai). Thus, A0i runson (2Oi+1[Hi+1[���[On[Hn)-labeled (2Oi[Hi)-trees and it aepts a tree h(2Oi[Hi)�; fii� there is a (2Oi[Hi)-labeled 2Oi�1 -treeh(2Oi�1 )�; f 0i suh that h(2Oi�1 )�; f + f 0i isaepted by Ai [see Theorem 4.1℄.{ A00i : the alternating Rabin automatonnarrow (2Hi )(A0i). Thus, A00i aeptsa (2Oi+1[Hi+1[���[On[Hn)-labeled 2Oi -treeh(2Oi)�; fi i� wide (2Hi )(h(2Oi )�; fi) is a-epted by A0i [see Theorem 4.3℄.Intuitively, in eah iteration 1 � i � n, we as-sume that the strategies of P1; : : : ; Pi�1 are given(they are enapsulated in the transition funtion ofAi) and the automaton Ai aepts all the omposi-tions of Pi; : : : Pn that together with the given strate-gies satisfy  . Thus, the transition from Ai to Ai+1involves an enapsulation of the possible strategies ofPi (and how they a�et the behavior required fromPi+1; : : : ; Pn in order to satisfy  ) into the transitionfuntion of Ai.Lemma 5.1  is realizable i� A0n�1 is not empty.The onstrution of Ai goes via i iterations. Eahiteration involves two automata transformations. Onetransformation (narrow ) gets and returns an alternat-ing tree automaton. The other transformation (shape)gets a nondeterministi tree automaton and return analternating tree automaton. While all the transforma-tions involve no blow-up in the size of the automata,the fat that shape handles nondeterministi automatarequires the appliation of an additional transforma-tion, namely the translation of an alternating tree au-tomaton to a nondeterministi one. This transforma-tion involves an exponential blow-up, leading to anoverall nonelementary blow-up.
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Theorem 5.2 The synthesis problem for CTL? andone-way hains is nonelementary deidable.Proof: It follows from the onstrutions desribed inSetion 4 that the size of A00n�1 is (n�1)-exp(j j). Thenonemptiness problem for A00n�1 an then be solved intime n-exp(j j) [MS95, KV98℄. Lemma 5.1 then im-plies that the realizability problem for  an be solvedin time n-exp(j j). The nonemptiness algorithm anbe extended to produe a witness for the automatonbeing nonempty (in fat, a witness that is a memory-less strategy [Tho95℄). A witness for the nonemptinessof A00n�1 indues a strategy fn for Pn. In order to geta strategy for Pn�1, we ombine A00n�2 with fn andget an automaton that is guaranteed to be nonemptyand whose witness indues a strategy fn�1 for Pn�1.We ontinue similarly until strategies for all proessesare synthesized.A mathing nonelementary lower bound is proved (forLTL formulas) in [PR90℄ (f. [PR79℄). This lowerbounds applies also to the other arhiteture.With appropriate simple modi�ations (skippingthe \wait onstrution" and rede�ning the \shape on-strution" to ignore the delay), the method desribedabove an handle one-way hannels in whih ommu-niation involves no delay (the de�nition of omposi-tion then oinides with the one of [PR90℄). As wedesribe below, the method an also be extended tohandle the other lasses of arhitetures desribed inSetion 3. The di�erenes among the arhitetures in-uene the sets of labels and diretions of the treesover whih the automata are de�ned (for example, ina one-way ring A runs on (2Oenv[On)-trees, and ina two-way ring, it runs on (2Oenv[O2[On)-trees), in-uene the de�nition of omposition, and aordinglyinuene the de�nition of shapeX (T ) and the \shapeonstrution" that handles. For all the arhitetures,however, the idea is similar: a suessive redution inthe number of proesses, where in eah step we omita proess and enapsulate its possible strategies intothe transition funtion of intermediate automata.One-way ring. Reall that in a one-way ring, theproess P1 reads signals from both Pn and the envi-ronment. We suggest two alternative modi�ations tothe method presented for one-way hains. The �rst israther simple: all the intermediate automata we on-strut maintain (in their alphabet) the input that P1reads from Pn. Then, in the last automaton, whihorresponds to Pn's strategy, we lose the ring by re-quiring the output of Pn to agree with the maintainedinput. The seond approah is leaner (and it also has

a omputational advantage), yet it requires a moresubstantial modi�ation. The idea is to start with P1and proeed in both diretions, enapsulating two pro-esses in eah iteration. The two diretions meet atthe automaton An2 , whose nonemptiness witnesses astrategy for Pn2 that satis�es the tasks inherited to Pn2by both the proesses to his left and these to his right.Two-way hain. The two-way hain arhiteture ismuh riher than that of a one-way hain. Sine thediÆulties imposed by inomplete information are or-thogonal and are handled by the narrow onstrution,we desribe here the solution for systems with om-plete information, thus Henv [ H = ;. In a two-wayhain, the proess Pi reads both Oi�1 and Oi+1, soits strategy is a funtion fi : (2Oi�1[Oi+1)� ! 2Oi .Aordingly, while in the ase of a one-way hainthe redution of the proess Pi involves a transitionfrom an automaton that runs on (2Oi[Oi+1[���[On)-labeled 2Oi�1 -trees to an automaton that runs on(2Oi+1[���[On)-labeled 2Oi-trees, here the redution ofPi should involve a transition from an automaton thatruns on (2Oi[Oi+1[���[On)-labeled (2Oi�1[Oi+1)-treesto an automaton that runs on (2Oi+1[���[On)-labeled(2Oi[Oi+2)-trees. In order to see the modi�ationsthat are therefore needed in the shape onstrution,let us �rst rede�ne the prediate shape and the om-position operator it involves.Let Xi�1, Xi, Xi+1, Xi+2, and X be �nite sets,and let z0 and z00 be the root diretions of Xi�1 andXi+1 respetively. For our appliation, Xj standsfor 2Oj , and X stands for 2Oi+3[:::[On . For an(Xi � Xi+1 � Xi+2 � X)-labeled (Xi�1 � Xi+1)-treeh(Xi�1 �Xi+1)�; fi, we say that h(Xi�1 �Xi+1)�; fiis a omposition of an Xi-labeled (Xi�1 � Xi+1)-tree h(Xi�1 �Xi+1)�; f1i and an (Xi+1 �Xi+2 �X)-labeled (Xi �Xi+2)-tree h(Xi �Xi+2)�; f2i i� for ev-ery hz1; z01i and hz2; z02i in Xi�1 �Xi+1 and for every� 2 (Xi�1�Xi+1)�, we have (f 0 and f 01 are the mem-oryfull versions of f and f 0):� f(�) = hf1(�); f2(�)i.� f(hz1; z01i) = hf1(hz0; z00i); f2(f 01(�))i.� f(� � hz1; z01i � hz1; z01i) = hf1(hz0; z00i � � �hz1; z01i); f2(f 01(hz0; z00i ��)� f 0(hz0; z00i ��)jXi+2 )i,where � is bitwise onatenation (e.g., y1 �y2�y3 �y4 = hy1; y3i � hy2; y4i) and �jXi+2 is the projetionof � on Xi+2.We then say that f = f1 + f1. Intuitively, f de-termines its Xi-element aording to f1 and deter-mines the (Xi+1 � Xi+2 � X)-element by applying
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f2 on an interleaving of an appliation of f 01, whihgives the Xi element and an appliation of f 0 on astrit pre�x of the input, whih returns an element inXi�Xi+1�Xi+2�X and is then projeted on Xi+2.In addition, sine we assume that ommuniation in-volves a delay, f ignores the last letters in a sequeneand refers instead to the root diretions.For a set T of (Xi � Xi+1 � Xi+2 � X)-labeled(Xi�1 � Xi+1)-trees, the set shapeXi�Xi+2(T ) on-sists of all (Xi+1 � Xi+2 � X)-labeled (Xi � Xi+2)-trees h(Xi �Xi+2)�; f2i for whih there exists an Xi-labeled (Xi�1 �Xi+1)-tree h(Xi�1 �Xi+1)�; f1i suhthat h(Xi�1 �Xi+1)�; f1 + f2i is in T .The shape onstrution in Theorem 4.1 an be mod-i�ed to handle the de�nition of shape above. Essen-tially, while in the urrent onstrution the automatonA0 guesses in eah transition a diretion x to proeedwith, in the new onstrution A0 needs to guess twoelements, orresponding to both Xi and Xi+2, and itshould remember the Xi+2 element for the projetiondesribed above.Two-way ring. The solution for two-way rings isbased on the modi�ed shape onstrution desribedfor two-way hains and the \two-diretion reasoning"desribed for one-way rings.The important ommon property of the four lasseswe handle is the fat that there are no two proessesboth reading input from the envirponmrnt. Conse-quently, the proesses an be linearly ordered aord-ing to the signals they know. More arhitetures fallin this ategory. For example, it is possible to replaea single proesses in a hain by a group of proessesthat share the same knowladge, and adjust the synthe-sis algorithms aordingly. An exat haraterizationof arhitetures for whih the synthesis problem is de-idable is an open problem.6 DisussionOne of the most signi�ant developments in thearea of system veri�ation over the last deade is thedevelopment of algorithmi methods for verifying tem-poral spei�ations of �nite-state systems [CGP99℄.This derives its signi�ane both from the fat thatmany synhronization and ommuniation protoolsan be modeled as �nite-state systems, as well as fromthe great ease of use of fully algorithmi methods. Afrequent ritiism against this approah, however, isthat veri�ation is done after signi�ant resoures havealready been invested in the development of the pro-gram. Sine systems typially ontain errors, veri�a-tion simply beomes part of the development proess.

The ritis argue that the desired goal is to use thespei�ation in the system development proess in or-der to guarantee the design of orret systems. Thisis exatly what synthesis algorithms do. Despite thisritiism, synthesis tools are not as popular in the in-dustry as veri�ation tools. There are several reasonsfor that: the sope of synthesis algorithms has beenquite limited, their omplexity is high, and they do notalways produe pratial systems, where pratialityis measured in a variety of ways, suh as optimality(say, number of lathes required for implementing thesystem in hardware, or number of messages needed tobe passed between the underlying proesses), testabil-ity (the ability to test hardware without aess to allthe internal variables), and the like.In this paper, we signi�antly extended the sopeof synthesis to inlude many pratial appliations.We laim that the high omplexity of the problem isnot really a serious objetion to the potential useful-ness of synthesis. First, we note that experiene withveri�ation shows that nonelementary algorithms annevertheless be pratial, sine the worst-ase om-plexity does not arise often. For example, while themodel-heking problem for spei�ations in seond-order logi has nonelementary omplexity, the model-heking toolMona [EKM98, Kla98℄ suessfully ver-i�es many spei�ations given in seond-order logi.Seond, we argue that synthesis is not harder thanveri�ation. This may sound as a wishful thinking, asit ontradits the known fat that while veri�ation iseasy (linear in the size of the model and at most ex-ponential in the size of the spei�ation), synthesis ishard (nonelementary). There is, however, somethingmisleading in this fat: while the omplexity of synthe-sis is given in terms of the spei�ation, the omplexityof veri�ation is given with respet to both the spei-�ation and the (muh bigger) system. In partiular,in a distributed setting, it is shown in [Ros92℄ thatthere are LTL spei�ations  n, of length O(n), andarhitetures with k proesses suh that the smalleststrategy that realizes  n in the given arhiteture hask-exp(n) states. What is the omplexity of verifyingwhether a system satis�es  n? Even if veri�ation islinear in the size of the system, it would be nonele-mentary in n for orret systems, just as the synthesisproblem, sine suh systems neessarily have at leastk-exp(n) states!In summary, we believe that the real hallenge thatsynthesis algorithms and tools fae in the oming yearsis mostly not that dealing with omputational om-plexity, but rather that of making automatially syn-thesized systems more pratially useful.
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